Result for 799BFFCE246E3109D3FCB4A363434CCF2C68E13D

Query result

Key Value
FileName./usr/lib64/R/library/Rsolid/html/00Index.html
FileSize1262
MD59DF78D152F6C5193546A1B4A93494F6B
SHA-1799BFFCE246E3109D3FCB4A363434CCF2C68E13D
SHA-256DD1F06618FE245EF0572C7270373D7C51564BE858F1337F80B8B355071CD10F2
SSDEEP24:hM0mIhBIXF0SspmIXF0PP7jMvvfTMRyF42P1YZp5dPyNtiXF2g:lmIzIepmI4lK4RVPIti8g
TLSHT14221B426E0E52B23746388A145C02FA413921363370B5D8F5E2E78B3C7047E533323D5
hashlookup:parent-total12
hashlookup:trust100

Network graph view

Parents (Total: 12)

The searched file hash is included in 12 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD5D708B0537C8E3BD54C07A6B11D3EF203
PackageArchx86_64
PackageDescription Rsolid is an R package for normalizing fluorescent intensity data from ABI/SOLiD second generation sequencing platform. It has been observed that the color-calls provided by factory software contain technical artifacts, where the proportions of colors called are extremely variable across sequencing cycles. Under the random DNA fragmentation assumption, these proportions should be equal across sequencing cycles and proportional to the dinucleotide frequencies of the sample. Rsolid implements a version of the quantile normalization algorithm that transforms the intensity values before calling colors. Results show that after normalization, the total number of mappable reads increases by around 5%, and number of perfectly mapped reads increases by 10%. Moreover a 2-5% reduction in overall error rates is observed, with a 2-6% reduction in the rate of valid adjacent color mis-matches. The latter is important, since it leads to a decrease in false-positive SNP calls. The normalization algorithm is computationally efficient. In a test we are able to process 300 million reads in 2 hours using 10 computer cluster nodes. The engine functions of the package are written in C for better performance.
PackageMaintainerFedora Project
PackageNameR-Rsolid
PackageRelease30.fc32
PackageVersion0.9.31
SHA-19B2DB575A3B1FFCC7B95828846E7B9EED1928940
SHA-256C34F819FFFCBC2541107A33022E5929FEBE02CB4B42BC5523DE834FA26235A92
Key Value
MD528FD23D01BF4AC152F48544B6152CFBF
PackageArchx86_64
PackageDescription Rsolid is an R package for normalizing fluorescent intensity data from ABI/SOLiD second generation sequencing platform. It has been observed that the color-calls provided by factory software contain technical artifacts, where the proportions of colors called are extremely variable across sequencing cycles. Under the random DNA fragmentation assumption, these proportions should be equal across sequencing cycles and proportional to the dinucleotide frequencies of the sample. Rsolid implements a version of the quantile normalization algorithm that transforms the intensity values before calling colors. Results show that after normalization, the total number of mappable reads increases by around 5%, and number of perfectly mapped reads increases by 10%. Moreover a 2-5% reduction in overall error rates is observed, with a 2-6% reduction in the rate of valid adjacent color mis-matches. The latter is important, since it leads to a decrease in false-positive SNP calls. The normalization algorithm is computationally efficient. In a test we are able to process 300 million reads in 2 hours using 10 computer cluster nodes. The engine functions of the package are written in C for better performance.
PackageMaintainerFedora Project
PackageNameR-Rsolid
PackageRelease34.fc34
PackageVersion0.9.31
SHA-18942C13A17F8EE5498E31AD72E595AF40F6A494C
SHA-25662B91621A9BE6D4647D21DC4BB209DF30C5B2CEA6E9A3160D8DD335E80CB25BB
Key Value
MD508AC7E140E8BF2F935AB889708F1AE50
PackageArcharmv7hl
PackageDescription Rsolid is an R package for normalizing fluorescent intensity data from ABI/SOLiD second generation sequencing platform. It has been observed that the color-calls provided by factory software contain technical artifacts, where the proportions of colors called are extremely variable across sequencing cycles. Under the random DNA fragmentation assumption, these proportions should be equal across sequencing cycles and proportional to the dinucleotide frequencies of the sample. Rsolid implements a version of the quantile normalization algorithm that transforms the intensity values before calling colors. Results show that after normalization, the total number of mappable reads increases by around 5%, and number of perfectly mapped reads increases by 10%. Moreover a 2-5% reduction in overall error rates is observed, with a 2-6% reduction in the rate of valid adjacent color mis-matches. The latter is important, since it leads to a decrease in false-positive SNP calls. The normalization algorithm is computationally efficient. In a test we are able to process 300 million reads in 2 hours using 10 computer cluster nodes. The engine functions of the package are written in C for better performance.
PackageMaintainerFedora Project
PackageNameR-Rsolid
PackageRelease30.fc32
PackageVersion0.9.31
SHA-1908E7A33BA62567A6F3F926B014ABF7583355C58
SHA-256DF6F445AD60ED966BFE39DE585B7060A4E4F95670C020C06F6BAA8AF34AA3CED
Key Value
MD504B61CF68EB545F8F45F8B760C570777
PackageArchi686
PackageDescription Rsolid is an R package for normalizing fluorescent intensity data from ABI/SOLiD second generation sequencing platform. It has been observed that the color-calls provided by factory software contain technical artifacts, where the proportions of colors called are extremely variable across sequencing cycles. Under the random DNA fragmentation assumption, these proportions should be equal across sequencing cycles and proportional to the dinucleotide frequencies of the sample. Rsolid implements a version of the quantile normalization algorithm that transforms the intensity values before calling colors. Results show that after normalization, the total number of mappable reads increases by around 5%, and number of perfectly mapped reads increases by 10%. Moreover a 2-5% reduction in overall error rates is observed, with a 2-6% reduction in the rate of valid adjacent color mis-matches. The latter is important, since it leads to a decrease in false-positive SNP calls. The normalization algorithm is computationally efficient. In a test we are able to process 300 million reads in 2 hours using 10 computer cluster nodes. The engine functions of the package are written in C for better performance.
PackageMaintainerFedora Project
PackageNameR-Rsolid
PackageRelease34.fc34
PackageVersion0.9.31
SHA-1B78615444BEC23063C167EE73D42A139C26AD366
SHA-25601010C289BAFA840DD98F66CAE3EB66195D71DBEB3569E23D04A4A0BA0E86905
Key Value
MD5CD73DD6B3F1DCD0C5605C2233E652601
PackageArchx86_64
PackageDescription Rsolid is an R package for normalizing fluorescent intensity data from ABI/SOLiD second generation sequencing platform. It has been observed that the color-calls provided by factory software contain technical artifacts, where the proportions of colors called are extremely variable across sequencing cycles. Under the random DNA fragmentation assumption, these proportions should be equal across sequencing cycles and proportional to the dinucleotide frequencies of the sample. Rsolid implements a version of the quantile normalization algorithm that transforms the intensity values before calling colors. Results show that after normalization, the total number of mappable reads increases by around 5%, and number of perfectly mapped reads increases by 10%. Moreover a 2-5% reduction in overall error rates is observed, with a 2-6% reduction in the rate of valid adjacent color mis-matches. The latter is important, since it leads to a decrease in false-positive SNP calls. The normalization algorithm is computationally efficient. In a test we are able to process 300 million reads in 2 hours using 10 computer cluster nodes. The engine functions of the package are written in C for better performance.
PackageMaintainerFedora Project
PackageNameR-Rsolid
PackageRelease33.fc33
PackageVersion0.9.31
SHA-1391E542EF767F88538C5D6E5864DADA7B9DB2877
SHA-256522C32913EC5B61BB171C40651D79087DC82E826D4274351897FA4AD14EB056A
Key Value
MD589052B20BB17EA642C2E36E5228DB7F0
PackageArchaarch64
PackageDescription Rsolid is an R package for normalizing fluorescent intensity data from ABI/SOLiD second generation sequencing platform. It has been observed that the color-calls provided by factory software contain technical artifacts, where the proportions of colors called are extremely variable across sequencing cycles. Under the random DNA fragmentation assumption, these proportions should be equal across sequencing cycles and proportional to the dinucleotide frequencies of the sample. Rsolid implements a version of the quantile normalization algorithm that transforms the intensity values before calling colors. Results show that after normalization, the total number of mappable reads increases by around 5%, and number of perfectly mapped reads increases by 10%. Moreover a 2-5% reduction in overall error rates is observed, with a 2-6% reduction in the rate of valid adjacent color mis-matches. The latter is important, since it leads to a decrease in false-positive SNP calls. The normalization algorithm is computationally efficient. In a test we are able to process 300 million reads in 2 hours using 10 computer cluster nodes. The engine functions of the package are written in C for better performance.
PackageMaintainerFedora Project
PackageNameR-Rsolid
PackageRelease34.fc34
PackageVersion0.9.31
SHA-16A14484E0BA3E782153B690A3219FE83714EE5BA
SHA-256742FEFA9FD3CD1D036951E25ADF07BCF79AA15032613247F9A945F91A7C27FBE
Key Value
MD59F20FC3B4056579A3204399E3EACD37C
PackageArchi686
PackageDescription Rsolid is an R package for normalizing fluorescent intensity data from ABI/SOLiD second generation sequencing platform. It has been observed that the color-calls provided by factory software contain technical artifacts, where the proportions of colors called are extremely variable across sequencing cycles. Under the random DNA fragmentation assumption, these proportions should be equal across sequencing cycles and proportional to the dinucleotide frequencies of the sample. Rsolid implements a version of the quantile normalization algorithm that transforms the intensity values before calling colors. Results show that after normalization, the total number of mappable reads increases by around 5%, and number of perfectly mapped reads increases by 10%. Moreover a 2-5% reduction in overall error rates is observed, with a 2-6% reduction in the rate of valid adjacent color mis-matches. The latter is important, since it leads to a decrease in false-positive SNP calls. The normalization algorithm is computationally efficient. In a test we are able to process 300 million reads in 2 hours using 10 computer cluster nodes. The engine functions of the package are written in C for better performance.
PackageMaintainerFedora Project
PackageNameR-Rsolid
PackageRelease33.fc33
PackageVersion0.9.31
SHA-13DC4D701D9C59073A1491DB1D72085FCE10441D7
SHA-2567091B1EEDA984D2F4FEFD3B65414026D0EDF372BBFC9BCF86F6F32A56D1A1A5D
Key Value
MD577F7A6C81C8F07267AE8BAFD7BBEE1F0
PackageArchi686
PackageDescription Rsolid is an R package for normalizing fluorescent intensity data from ABI/SOLiD second generation sequencing platform. It has been observed that the color-calls provided by factory software contain technical artifacts, where the proportions of colors called are extremely variable across sequencing cycles. Under the random DNA fragmentation assumption, these proportions should be equal across sequencing cycles and proportional to the dinucleotide frequencies of the sample. Rsolid implements a version of the quantile normalization algorithm that transforms the intensity values before calling colors. Results show that after normalization, the total number of mappable reads increases by around 5%, and number of perfectly mapped reads increases by 10%. Moreover a 2-5% reduction in overall error rates is observed, with a 2-6% reduction in the rate of valid adjacent color mis-matches. The latter is important, since it leads to a decrease in false-positive SNP calls. The normalization algorithm is computationally efficient. In a test we are able to process 300 million reads in 2 hours using 10 computer cluster nodes. The engine functions of the package are written in C for better performance.
PackageMaintainerFedora Project
PackageNameR-Rsolid
PackageRelease30.fc32
PackageVersion0.9.31
SHA-1AC2F835791917005B60A4BA4F6ACA616F27C2981
SHA-256956A50E865A272E0006BA6C939A00897CDE4D6FAF74D0B3071208DA78348DE8D
Key Value
MD5528BB605AEAE4F44B84546CE6AAE9820
PackageArchaarch64
PackageDescription Rsolid is an R package for normalizing fluorescent intensity data from ABI/SOLiD second generation sequencing platform. It has been observed that the color-calls provided by factory software contain technical artifacts, where the proportions of colors called are extremely variable across sequencing cycles. Under the random DNA fragmentation assumption, these proportions should be equal across sequencing cycles and proportional to the dinucleotide frequencies of the sample. Rsolid implements a version of the quantile normalization algorithm that transforms the intensity values before calling colors. Results show that after normalization, the total number of mappable reads increases by around 5%, and number of perfectly mapped reads increases by 10%. Moreover a 2-5% reduction in overall error rates is observed, with a 2-6% reduction in the rate of valid adjacent color mis-matches. The latter is important, since it leads to a decrease in false-positive SNP calls. The normalization algorithm is computationally efficient. In a test we are able to process 300 million reads in 2 hours using 10 computer cluster nodes. The engine functions of the package are written in C for better performance.
PackageMaintainerFedora Project
PackageNameR-Rsolid
PackageRelease33.fc33
PackageVersion0.9.31
SHA-12C358CCBB72E050FE6E8F7C648A47C5EC6F1EAF7
SHA-256B6FEC6C8713E8957AAF36E45DDDB75BB1FC5DC33E8B366DFFBB23C4C1209C80E
Key Value
MD58B1409621F2B9679CBC24B300BDC3305
PackageArchaarch64
PackageDescription Rsolid is an R package for normalizing fluorescent intensity data from ABI/SOLiD second generation sequencing platform. It has been observed that the color-calls provided by factory software contain technical artifacts, where the proportions of colors called are extremely variable across sequencing cycles. Under the random DNA fragmentation assumption, these proportions should be equal across sequencing cycles and proportional to the dinucleotide frequencies of the sample. Rsolid implements a version of the quantile normalization algorithm that transforms the intensity values before calling colors. Results show that after normalization, the total number of mappable reads increases by around 5%, and number of perfectly mapped reads increases by 10%. Moreover a 2-5% reduction in overall error rates is observed, with a 2-6% reduction in the rate of valid adjacent color mis-matches. The latter is important, since it leads to a decrease in false-positive SNP calls. The normalization algorithm is computationally efficient. In a test we are able to process 300 million reads in 2 hours using 10 computer cluster nodes. The engine functions of the package are written in C for better performance.
PackageMaintainerFedora Project
PackageNameR-Rsolid
PackageRelease30.fc32
PackageVersion0.9.31
SHA-19E029F1C1718DA9596D54843A96CE648C027CB69
SHA-25643100F59B0A7C5ECC67605C121E0BAAB13BAE78F4303B086BC498A4FD9338409
Key Value
MD5E7E9516AD910ED713DCD6B5B9C43BB89
PackageArcharmv7hl
PackageDescription Rsolid is an R package for normalizing fluorescent intensity data from ABI/SOLiD second generation sequencing platform. It has been observed that the color-calls provided by factory software contain technical artifacts, where the proportions of colors called are extremely variable across sequencing cycles. Under the random DNA fragmentation assumption, these proportions should be equal across sequencing cycles and proportional to the dinucleotide frequencies of the sample. Rsolid implements a version of the quantile normalization algorithm that transforms the intensity values before calling colors. Results show that after normalization, the total number of mappable reads increases by around 5%, and number of perfectly mapped reads increases by 10%. Moreover a 2-5% reduction in overall error rates is observed, with a 2-6% reduction in the rate of valid adjacent color mis-matches. The latter is important, since it leads to a decrease in false-positive SNP calls. The normalization algorithm is computationally efficient. In a test we are able to process 300 million reads in 2 hours using 10 computer cluster nodes. The engine functions of the package are written in C for better performance.
PackageMaintainerFedora Project
PackageNameR-Rsolid
PackageRelease34.fc34
PackageVersion0.9.31
SHA-10B618871A0FA5C41AEF3EBACAA7D44AAD7743F90
SHA-2569E888B7F60B2F54B8F681BD529A32428C571F201FAD480A8A2EEC0CD0ED58F36
Key Value
MD54BEDEBBE6D54D45B1B1645CEEC0B76F0
PackageArcharmv7hl
PackageDescription Rsolid is an R package for normalizing fluorescent intensity data from ABI/SOLiD second generation sequencing platform. It has been observed that the color-calls provided by factory software contain technical artifacts, where the proportions of colors called are extremely variable across sequencing cycles. Under the random DNA fragmentation assumption, these proportions should be equal across sequencing cycles and proportional to the dinucleotide frequencies of the sample. Rsolid implements a version of the quantile normalization algorithm that transforms the intensity values before calling colors. Results show that after normalization, the total number of mappable reads increases by around 5%, and number of perfectly mapped reads increases by 10%. Moreover a 2-5% reduction in overall error rates is observed, with a 2-6% reduction in the rate of valid adjacent color mis-matches. The latter is important, since it leads to a decrease in false-positive SNP calls. The normalization algorithm is computationally efficient. In a test we are able to process 300 million reads in 2 hours using 10 computer cluster nodes. The engine functions of the package are written in C for better performance.
PackageMaintainerFedora Project
PackageNameR-Rsolid
PackageRelease33.fc33
PackageVersion0.9.31
SHA-181B0696CB67B4B9EDF52B319C29CFECDDD1F3A14
SHA-25642F56B9501EE4A57A0D7F58574B2CE95A5DF8C0156E0A4F1B3767223806CB763