Result for B750E57A900683363B05AFE6F1EE7D53B4E8831B

Query result

Key Value
FileName./usr/share/doc/libkido0.1/changelog.Debian.arm64.gz
FileSize223
MD54493D865E401AA29F18952D4E84285D3
SHA-1B750E57A900683363B05AFE6F1EE7D53B4E8831B
SHA-256FB7A6921234B84605E41334989083AAE10E4B76AC60626D8F0DAC5A99714E7DC
SSDEEP6:XtvDELFYLUg41dNlyLNMgMTS41qRppMovnuojCyIR:XhYL6Lx4HUag4ipd1CyIR
TLSHT141D0A793A7615772F7815E6440610467E78815422BFF675658788309993102805E497A
hashlookup:parent-total14
hashlookup:trust100

Network graph view

Parents (Total: 14)

The searched file hash is included in 14 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize60044
MD52DA03CC2CD28A8D8D110DDFD68C1A9C0
PackageDescriptionKinematics Dynamics and Optimization Library - gui library KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-gui0.1
PackageSectionlibs
PackageVersion0.1.0+dfsg-6+b1
SHA-154277A17FF93AF4A4EA88524E95360CB8E4DFA22
SHA-2567B56E5F8475EE83EF005BEF665A66BF5EA618A3E5E7B741FD0ED6694C84B2DB2
Key Value
FileSize136036
MD560C683443BA57D9A4DE53330EC2E6167
PackageDescriptionKinematics Dynamics and Optimization Library - development files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains main headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-6+b1
SHA-1000D7634EE1E434F7624AC5FA5DA54A47D86480E
SHA-2563CD16D589936CB3C9E0EDD02328CDD01F43E4E6AC7D473621A636E2F18EB291B
Key Value
FileSize12296
MD506B64E468B404C07FC5CEF10949B8A4D
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer dev KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains IPOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-optimizer-ipopt-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-6+b1
SHA-1FA3CEB4E26473799BDB0E27C2064F80B15EA1230
SHA-2561CDD9BE031C7C145F04298F15F5A2C464AA0DFC4B09169E403F3D677079FAA86
Key Value
FileSize19672
MD5F9A83696E3476D56A5D730456C987B29
PackageDescriptionKinematics Dynamics and Optimization Library - utils dev files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-utils-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-6+b1
SHA-17A44740FA2D18CE1094C8853B1758C35B7223DAA
SHA-256E3F64FC7453E1FF9C16FEFD99BB88CB310048CCFEB20694253656087D7D2BBE1
Key Value
FileSize181232
MD55266E8447C175526AE9FC95B60B49766
PackageDescriptionKinematics Dynamics and Optimization Library - utils library KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the KIDO utils library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-utils0.1
PackageSectionlibs
PackageVersion0.1.0+dfsg-6+b1
SHA-1CA4D8115E0DCB070075BC2978E65B5B7D5877A25
SHA-256839801A65AD06246A9B5D1C79A0CFC884CFCF34493FB17E1BE4B9A05BE921781
Key Value
FileSize23240
MD555BD09AAA1C2CD3C453781342D017265
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer lib KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the ipopt optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-optimizer-ipopt0.1
PackageSectionlibs
PackageVersion0.1.0+dfsg-6+b1
SHA-12AB4A997FB45C2BDFCB12716F9306DAF7AFBB684
SHA-25621C442F389C3E9C508A52ADE8AB2C39EB47C43C08544DACCEB3A975758D11D7C
Key Value
FileSize11732
MD5C1C9F7BA7588C194CCD1487F628275DF
PackageDescriptionKinematics Dynamics and Optimization Library - optimizer dev files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains NLOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-optimizer-nlopt-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-6+b1
SHA-13EB6CB8D482FA5A89242A4F52E6ACEAB02D9B3CF
SHA-25623C2212642008D623DB71CD7282227B5D42FF224C90195C535FB36B50D2CAE77
Key Value
FileSize23064
MD53BFE120267F5652859A0C5063896CBFF
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-gui-osg-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-6+b1
SHA-17BDA0E16203A4F9BA268360875983ACCC43CE3B6
SHA-2564ED93A1D8CF545DDD1D32342B7777F0C006C36D56CAED104DD47662E6AE243D9
Key Value
FileSize33652
MD584136D0F196E1EFA8448D2DC46823A11
PackageDescriptionKinematics Dynamics and Optimization Library - gui dev files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI headers and other useful tools for GUI development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-gui-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-6+b1
SHA-1A7AF9978F7D35AB619CCA958E177329130D34C4F
SHA-256821B7B8DDDEC3EBEEBBC02EFAF1DBCD57023E035CC327892BE2B74ED42176129
Key Value
FileSize130504
MD51DD868EA1CFC8DE51006FA2BF26319FB
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg library KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the GUI OpenSceneGraph optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-gui-osg0.1
PackageSectionlibs
PackageVersion0.1.0+dfsg-6+b1
SHA-1DD2830DB4F42C1CEF112AA3D1FFEF2FE42165FC8
SHA-2566627E8D5882502DCA3A2B325FBE2A59888E83B4D9B7727C18819F14DCA8F794F
Key Value
FileSize797640
MD5D1B1221DDF1A4595789E5B33D7AC3C67
PackageDescriptionKinematics Dynamics and Optimization Library - main library KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the main library of KIDO.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido0.1
PackageSectionlibs
PackageVersion0.1.0+dfsg-6+b1
SHA-18711C61E12B93A8C74E79ABEDF1633BF60201303
SHA-256E66E180F7219E32FD0AF6BDB06381CEA8749CA6BF491AB072B2FFCC1A124BD85
Key Value
FileSize21116
MD5AE8FF25D92C568A119B80091CF656FF3
PackageDescriptionKinematics Dynamics and Optimization Library - nlopt optimizer lib KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the NLOPT optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-optimizer-nlopt0.1
PackageSectionlibs
PackageVersion0.1.0+dfsg-6+b1
SHA-1EBC507DAD54CD7B84CB0E32328BA548345103C4A
SHA-2567C9A324D8B02138B67D34EF1C45994313E618120A9B793ADE790445119048F4A
Key Value
FileSize106900
MD573B998691F6A39E52583CE4A7B4FF5D3
PackageDescriptionKinematics Dynamics and Optimization Library - planning library KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the KIDO planning library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-planning0.1
PackageSectionlibs
PackageVersion0.1.0+dfsg-6+b1
SHA-17C6107596B6E1651CDB9436B2D99187638114CE2
SHA-256C3C4C3DF33AD638CB72917123F8B5875D736B0B0FB56247B178571CE72072575
Key Value
FileSize16516
MD5852F8EC02034EADAB66D6E557AF37C00
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-planning-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-6+b1
SHA-114BD9A7E321CF3CD0365EE1F683D93D633419124
SHA-256619CC5D0D787FD8FDE1774F28EF8120395BA550625C334911C4CA76830C83F50