Result for E74C28A75A21BA743A1CD5C604D9B9DCDDA931E7

Query result

Key Value
FileName./usr/share/doc/libdart6/changelog.Debian.armhf.gz
FileSize218
MD527228D43FD66BC499E435AF3623975E0
SHA-1E74C28A75A21BA743A1CD5C604D9B9DCDDA931E7
SHA-2563CAFEDC9F5E0470CC8711593B0E8F99A750B5624CEB9412EB3E7B0B69B8E1237
SSDEEP6:XtxmCsSI+H+x/XJTIe3iHq9MORemPXUQUZ/n:XuX6oRTZ3iK9tem/YB
TLSHT10BD02333F1DDF19FA18842FC9105105917F5CC9497056E14C78695480EED025146B549
hashlookup:parent-total28
hashlookup:trust100

Network graph view

Parents (Total: 28)

The searched file hash is included in 28 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize24876
MD52B5D04A1D2F301D3236D360248AF60F6
PackageDescriptionKinematics Dynamics and Optimization Library - nlopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains NLOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-nlopt-dev
PackageSectionlibdevel
PackageVersion6.9.5-3+b1
SHA-10D5646CF21040D66F38740FA4D332533D6D518DB
SHA-256B4CFF8FA7F6887E4C17F508AEEC849A82ACF31EB99466547235F3DFDA5223E11
Key Value
FileSize65688
MD5427C278A11F96B0D92E326E047FBD73B
PackageDescriptionDynamic Animation and Robotics Toolkit - Utils URDF Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the Utils URDF library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf6
PackageSectionlibs
PackageVersion6.9.5-3+b1
SHA-118EE653BC7263951783D42B28EBBCB9D62B1B0D9
SHA-256E30CA2B3E15EBF173561939367170F8F37E44233AB9023EBB7329631B1E5602C
Key Value
FileSize27100
MD58254862D36F3CBEB8B4CEA513CF824B3
PackageDescriptionKinematics Dynamics and Optimization Library - gui dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI headers and other useful tools for GUI development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-dev
PackageSectionlibdevel
PackageVersion6.9.5-3+b1
SHA-118F9969910ED98815CF046BA7C2AF0B2C9DC48AB
SHA-25693162F05FD9576D9182433AEC3E31475CEA9113CA6FDB5D0F59469C5EAB2F777
Key Value
FileSize41848
MD5E382535E7B0D83C5C33069A3A1B56353
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.9.5-3+b1
SHA-11CFC924FF0CA75CA799195801D0798D2FACC3DBE
SHA-25694BEF819DFD792AF5DA99D63E7C3A78677CB60132EE9974BE446E5231E1CD7D2
Key Value
FileSize181968
MD52D828638DE57E4A2209338C2FED544E0
PackageDescriptionKinematics Dynamics and Optimization Library - utils library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the DART utils library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils6
PackageSectionlibs
PackageVersion6.9.5-3+b1
SHA-1285BE394676A109643007273CFC3DB6D8D85BC25
SHA-2564C948E3ECD0DBA9ABAEFEC0DAFE8DAF1957B994F9DB4FAC11E85930B3823C095
Key Value
FileSize35964
MD5273D405B8D011F788A40BC562F86A788
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the odelcpsolver library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver6
PackageSectionlibs
PackageVersion6.9.5-3+b1
SHA-12CA6D94D662138604AD9934A02B057B7B0625361
SHA-25644B1C88280295C1D7CD90594AA486E98620F0191E4056637174977ADA0B90A9A
Key Value
FileSize194120
MD5B31DF44357531928D44E303C8A1F919C
PackageDescriptionKinematics Dynamics and Optimization Library - imgui lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the imgui library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-imgui6
PackageSectionlibs
PackageVersion6.9.5-3+b1
SHA-13C0F8D77814361B0F3BAB9088D25781862BFAC93
SHA-256F79CBCBE68ABFE55BC74480149E5F0A5D2FA261662095A16E7D2CE420F14C4EF
Key Value
FileSize50852
MD57AC0936C976F43E06367E3BCABF9C10B
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the collision library with Bullet backend.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet6
PackageSectionlibs
PackageVersion6.9.5-3+b1
SHA-151FC7A167584BA07AAA903BA5CA6A164FA32AA8F
SHA-25665F55C4D78CD3CDCC917675106B7E046CA20C9C84AF046036523CA29FDA13165
Key Value
FileSize52748
MD50461DE023DA23AC160B5AD864C182284
PackageDescriptionKinematics Dynamics and Optimization Library - lodepng lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the lodepng library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-lodepng6
PackageSectionlibs
PackageVersion6.9.5-3+b1
SHA-1649DFB21FC6E7FAB539F24043F87EB4B4CBA0477
SHA-256F0FBD92692D083918FA5BE70B9C2D6ACD7EF1AA713BF36BDC5AAC885E5EDCAEA
Key Value
FileSize25856
MD519F6BB147EB6156B2E1FEF95492CF684
PackageDescriptionDynamic Animation and Robotics Toolkit - URDF Component Development Files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains urdf utils headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf-dev
PackageSectionlibdevel
PackageVersion6.9.5-3+b1
SHA-16A3560D2AC2A21267BF425F4E8EC7B780CFBA44A
SHA-25667D7E9F3586360200E799928204C2F1A1F651267FB1E3D09F7DCB068F8427874