Result for E3E6A4FEDF7041E68EF4745557E0204BF2E35D6A

Query result

Key Value
MD5548696509A3684E8B7A8FC72D7B8EF2C
PackageArchaarch64
PackageDescription This package contains the Python-plugin for shogun. The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to easily combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms. We combine modern software architecture in C++ with both efficient low-level computing back-ends and cutting edge algorithm implementations to solve large-scale Machine Learning problems (yet) on single machines. One of Shogun's most exciting features is that you can use the toolbox through a unified interface from C++, Python(3), Octave, R, Java, Lua, etc. This not just means that we are independent of trends in computing languages, but it also lets you use Shogun as a vehicle to expose your algorithm to multiple communities. We use SWIG to enable bidirectional communication between C++ and target languages. Shogun runs under Linux/Unix, MacOS, Windows. Originally focusing on large-scale kernel methods and bioinformatics (for a list of scientific papers mentioning Shogun, see here), the toolbox saw massive extensions to other fields in recent years. It now offers features that span the whole space of Machine Learning methods, including many classical methods in classification, regression, dimensionality reduction, clustering, but also more advanced algorithm classes such as metric, multi-task, structured output, and online learning, as well as feature hashing, ensemble methods, and optimization, just to name a few. Shogun in addition contains a number of exclusive state-of-the art algorithms such as a wealth of efficient SVM implementations, Multiple Kernel Learning, kernel hypothesis testing, Krylov methods, etc. All algorithms are supported by a collection of general purpose methods for evaluation, parameter tuning, preprocessing, serialization & I/O, etc; the resulting combinatorial possibilities are huge. The wealth of ML open-source software allows us to offer bindings to other sophisticated libraries including: LibSVM, LibLinear, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, GPML and more. Shogun got initiated in 1999 by Soeren Sonnenburg and Gunnar Raetsch (that's where the name ShoGun originates from). It is now developed by a larger team of authors, and would not have been possible without the patches and bug reports by various people. See contributions for a detailed list. Statistics on Shogun's development activity can be found on ohloh.
PackageMaintainerFedora Project
PackageNamepython2-shogun
PackageRelease2.fc24
PackageVersion4.1.0
SHA-1E3E6A4FEDF7041E68EF4745557E0204BF2E35D6A
SHA-25688391DBA7A8281D237EA0E8AD8320291C531EEBBB27BBBDB65DD28F4C1C95042
hashlookup:children-total342
hashlookup:trust50

Network graph view

Children (Total: 342)

The searched file hash includes 342 children files known and seen by metalookup. A sample is included below:

Key Value
FileName./usr/share/doc/shogun/ipython-notebooks/neuralnets/rbms_dbns.ipynb
FileSize18871
MD558E7961D1D37AC631749A11181EFB385
SHA-100046C74229661675E3EDEA96AE289C1742C0B56
SHA-25621D83CE4B67C50E30BC9AB4A832DE6BB4FED15D34EC2ECDA7352A859EA02CFC2
SSDEEP384:MzhNLxYHsfbU/wvQq9KtuKGFzHZv3UldtGkTkq:utYMDk8FzHZmTQq
TLSHT147827425D1213E339252A06511FC93D4723354DB8E92784D3F2C4A6C0F4DA9F66BAF9D
Key Value
FileName./usr/share/doc/shogun/examples/python_modular/statistics_quadratic_time_mmd.py
FileSize5095
MD57534FF607102A0CFCCE5754A3F4890DC
SHA-100FBA7475698D5B36F7C66654F754EC0C85A33B0
SHA-2565B696D78EF19588CB9C718A6CE71B4C580FC1525BD1F6A74374AB8A6917661F7
SSDEEP96:PPj253uXzi7gLNemeg0As/gCz9rBzsQIyLW:PbNjikLNemeRl5uP
TLSHT12CB1C635F743F23661D4228C872E058DF33699645732CC3540DCC77A32815A2573AF86
Key Value
FileName./usr/share/doc/python-shogun/examples/python_modular/evaluation_director_contingencytableevaluation_modular.py
FileSize1179
MD58D47DF72D4AB20F34D14CBFD3FC5224D
SHA-101D5D6CA66FE294142091B0319C0CA627F0CFEB9
SHA-25621C1DA61FA4478A04A28931D420222F5278DFAFA964B153BD7466D303531505E
SSDEEP24:m/r0F+VEMov2AIXvw+QIJtd+AdtAi0Dtr0LK2Ry6BNg5bClGT2v:mDFVSDA4Ov0ZAg5bCl82v
TLSHT16C21C1EC72F3A159B057615E23D054E620BAF9FB364C0C185AA907A80CE1D52F72783B
Key Value
FileName./usr/share/doc/python-shogun/examples/python_modular/labels_io_modular.py
FileSize351
MD5714CB87DE72D2F8A0F4E653D5D147513
SHA-102A4E6D418229E226A6373EC2B95915D281427C6
SHA-256B466C5217835F9535DF2397ACF0CF2EF6FC57A1B098AD9302FA9A214EABB917B
SSDEEP6:HWaH6u++1kvL2F8Rz03K6AyYFj56ZNY3Syk0c/Ni6FrJe018BAq2KVMqAYh7In:HSx8626Rz03KfywENG2iur80aPHx7In
TLSHT1D2E026EE95AA9131C0961D66BA904EB0A2FB6DA4338D646BD6843E04914ADE77C60221
Key Value
FileName./usr/share/doc/shogun/ipython-notebooks/multiclass/Tree/DecisionTrees.ipynb
FileSize73423
MD56226706A5FE4EB5CEA4D9260E2284EF9
SHA-105AFEC5539FC5FCCA069AC471FD06B029B99C084
SHA-256F6D3D9A8DC9A75CB65D5C98DA2BBA772BA90A2668CE5C804401E6D0B2361C698
SSDEEP1536:5unUwCYKBkhmEGeeR+R7daceKrnSaJ4iyC:5unU7uweeR0NrSxRC
TLSHT146736329E4212E338A93A07A91DDC39173B752CB8E417C1C7B6C896C1F8D81F16B679D
Key Value
FileName./usr/lib64/python2.7/site-packages/shogun/Loss/__init__.pyo
FileSize238
MD5F35624CD027716DDEB057C0872A9E38D
SHA-105CF28C55D0F0C14B3CE8A1CF2DB5C9F8ED66B9A
SHA-25631F2D0D5DB65015E1693C4ABBC997E760F50C67E0C00E3BC190682CE6D7F17DB
SSDEEP6:4cyltGrObGsu/hfNOua0tRQbLyDG8HGOxmDruTWbRaF:4krKk8ua0ta7x6WbgF
TLSHT195D0A7D2B3A356A3C5A45C7EB1700126C55C9C739A536555AD49125D1D8A2CA163A140
Key Value
FileName./usr/share/doc/python-shogun/examples/python_modular/regression_least_squares_modular.py
FileSize1069
MD54BD0BB3127FE9768BDA2C813A20A4EC0
SHA-106780EDDFB822E21FC65C8D2A051233EDD7160CE
SHA-2568E0B32B0CAFD7084856A822E49F4826B2D685E36A1A88718B8E6325E9C58B509
SSDEEP24:I01KacJaJyQrpK8fb2KS2CriXK2aBzG93O9n:do3E0C4iXr3O9n
TLSHT183117D0B5B26A020CFF6E52E24A5299507F6DD4B2F874409DB8C2B1403DB3DAF4D1189
Key Value
FileName./usr/lib/python2.7/dist-packages/shogun/__init__.py
FileSize242
MD534E9B6980AB242BE93EFE874B10E5ED1
SHA-106F6600BA581F182813519535E23A2D1757CE6A0
SHA-2568847B1B3CCD4CBAE012A9F2C84AD79EFA68AEC665E6084CA24AED29830926C82
SSDEEP6:UYXJfAhc4NfQqvf/pHt1M6FYZfm+hHWtNjHWxg:UWJoh5fQaJHtG6+4G2D7
TLSHT1FAD0A71823184D5FD9F7D361306119661D3C0ED75F546A7AC464846D0A6E870A2A3E5D
Key Value
FileName./usr/share/doc/python-shogun/examples/python_modular/graphical/smem_2d_gmm.py
FileSize3771
MD508E9F489F87ABCC0F3038473B5D4EDE5
SHA-107826896DD48BD38E0E1B180552452F1CD02FC2E
SHA-25670DF3C1B8C5AB3C2E9B34B135F7B497111683DE492BD6BB9F976B00A38A8DB06
SSDEEP48:NRmUP4ryedAOt7vNq4JZgIa813QOmlibd/rd/VnpNBguw9Dsk5Aq:5ELt7vNwIxQOFblrlVnpNBguw9Dsk51
TLSHT1C371D321A9A5CFB703D0CCE9A8D4009707399176BA10CCAD21AF5E7747E387CA5AD771
Key Value
FileName./usr/share/doc/shogun/examples/python_modular/graphical/interactive_svm_demo.py
FileSize12671
MD54067669811977A911E48C1E77E39DE2A
SHA-107F7C8634F39A5D38154ED7C2C0EEBC947780BF6
SHA-256BFF8D94E08DEB95670B9F5B0E3ED8CA5C49FE6788DBF37ECF168AE2A2B8F9580
SSDEEP384:1PlvxitjwXO5BA5TtjwXRzXlKyEmJzoMwK/pHxQZrHQVwMXH:1ninMAVKyRBHVX
TLSHT1CF428105A01B8912A793EC2F89DBB9076E2A2807484D75347EFC86057F55076A2F2FF6