Result for 00046C74229661675E3EDEA96AE289C1742C0B56

Query result

Key Value
FileName./usr/share/doc/shogun/ipython-notebooks/neuralnets/rbms_dbns.ipynb
FileSize18871
MD558E7961D1D37AC631749A11181EFB385
SHA-100046C74229661675E3EDEA96AE289C1742C0B56
SHA-25621D83CE4B67C50E30BC9AB4A832DE6BB4FED15D34EC2ECDA7352A859EA02CFC2
SSDEEP384:MzhNLxYHsfbU/wvQq9KtuKGFzHZv3UldtGkTkq:utYMDk8FzHZmTQq
TLSHT147827425D1213E339252A06511FC93D4723354DB8E92784D3F2C4A6C0F4DA9F66BAF9D
hashlookup:parent-total3
hashlookup:trust65

Network graph view

Parents (Total: 3)

The searched file hash is included in 3 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD59AFE7FB781D39DB05A5A5A63D1CB843C
PackageArchaarch64
PackageDescriptionThis package contains the Python3-plugin for shogun. The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to easily combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms. We combine modern software architecture in C++ with both efficient low-level computing back-ends and cutting edge algorithm implementations to solve large-scale Machine Learning problems (yet) on single machines. One of Shogun's most exciting features is that you can use the toolbox through a unified interface from C++, Python(3), Octave, R, Java, Lua, etc. This not just means that we are independent of trends in computing languages, but it also lets you use Shogun as a vehicle to expose your algorithm to multiple communities. We use SWIG to enable bidirectional communication between C++ and target languages. Shogun runs under Linux/Unix, MacOS, Windows. Originally focusing on large-scale kernel methods and bioinformatics (for a list of scientific papers mentioning Shogun, see here), the toolbox saw massive extensions to other fields in recent years. It now offers features that span the whole space of Machine Learning methods, including many classical methods in classification, regression, dimensionality reduction, clustering, but also more advanced algorithm classes such as metric, multi-task, structured output, and online learning, as well as feature hashing, ensemble methods, and optimization, just to name a few. Shogun in addition contains a number of exclusive state-of-the art algorithms such as a wealth of efficient SVM implementations, Multiple Kernel Learning, kernel hypothesis testing, Krylov methods, etc. All algorithms are supported by a collection of general purpose methods for evaluation, parameter tuning, preprocessing, serialization & I/O, etc; the resulting combinatorial possibilities are huge. The wealth of ML open-source software allows us to offer bindings to other sophisticated libraries including: LibSVM, LibLinear, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, GPML and more. Shogun got initiated in 1999 by Soeren Sonnenburg and Gunnar Raetsch (that's where the name ShoGun originates from). It is now developed by a larger team of authors, and would not have been possible without the patches and bug reports by various people. See contributions for a detailed list. Statistics on Shogun's development activity can be found on ohloh.
PackageMaintainerFedora Project
PackageNamepython3-shogun
PackageRelease2.fc24
PackageVersion4.1.0
SHA-11E14D77716A6EE4B1FB3E32602ACA5FDD294817C
SHA-256EE746E59B31204BAA5A20797C1522DF0E8A141B1353E1A82DEEEFC5F55183592
Key Value
MD5548696509A3684E8B7A8FC72D7B8EF2C
PackageArchaarch64
PackageDescription This package contains the Python-plugin for shogun. The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to easily combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms. We combine modern software architecture in C++ with both efficient low-level computing back-ends and cutting edge algorithm implementations to solve large-scale Machine Learning problems (yet) on single machines. One of Shogun's most exciting features is that you can use the toolbox through a unified interface from C++, Python(3), Octave, R, Java, Lua, etc. This not just means that we are independent of trends in computing languages, but it also lets you use Shogun as a vehicle to expose your algorithm to multiple communities. We use SWIG to enable bidirectional communication between C++ and target languages. Shogun runs under Linux/Unix, MacOS, Windows. Originally focusing on large-scale kernel methods and bioinformatics (for a list of scientific papers mentioning Shogun, see here), the toolbox saw massive extensions to other fields in recent years. It now offers features that span the whole space of Machine Learning methods, including many classical methods in classification, regression, dimensionality reduction, clustering, but also more advanced algorithm classes such as metric, multi-task, structured output, and online learning, as well as feature hashing, ensemble methods, and optimization, just to name a few. Shogun in addition contains a number of exclusive state-of-the art algorithms such as a wealth of efficient SVM implementations, Multiple Kernel Learning, kernel hypothesis testing, Krylov methods, etc. All algorithms are supported by a collection of general purpose methods for evaluation, parameter tuning, preprocessing, serialization & I/O, etc; the resulting combinatorial possibilities are huge. The wealth of ML open-source software allows us to offer bindings to other sophisticated libraries including: LibSVM, LibLinear, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, GPML and more. Shogun got initiated in 1999 by Soeren Sonnenburg and Gunnar Raetsch (that's where the name ShoGun originates from). It is now developed by a larger team of authors, and would not have been possible without the patches and bug reports by various people. See contributions for a detailed list. Statistics on Shogun's development activity can be found on ohloh.
PackageMaintainerFedora Project
PackageNamepython2-shogun
PackageRelease2.fc24
PackageVersion4.1.0
SHA-1E3E6A4FEDF7041E68EF4745557E0204BF2E35D6A
SHA-25688391DBA7A8281D237EA0E8AD8320291C531EEBBB27BBBDB65DD28F4C1C95042
Key Value
MD50C4979D4F74741B3776FB2EE58BBDD8F
PackageArchaarch64
PackageDescriptionThis package contains very detailed documentation, and some great examples for shogun. If you need the Chinese API-docs, you would want to install shogun-doc-cn, too. The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to easily combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms. We combine modern software architecture in C++ with both efficient low-level computing back-ends and cutting edge algorithm implementations to solve large-scale Machine Learning problems (yet) on single machines. One of Shogun's most exciting features is that you can use the toolbox through a unified interface from C++, Python(3), Octave, R, Java, Lua, etc. This not just means that we are independent of trends in computing languages, but it also lets you use Shogun as a vehicle to expose your algorithm to multiple communities. We use SWIG to enable bidirectional communication between C++ and target languages. Shogun runs under Linux/Unix, MacOS, Windows. Originally focusing on large-scale kernel methods and bioinformatics (for a list of scientific papers mentioning Shogun, see here), the toolbox saw massive extensions to other fields in recent years. It now offers features that span the whole space of Machine Learning methods, including many classical methods in classification, regression, dimensionality reduction, clustering, but also more advanced algorithm classes such as metric, multi-task, structured output, and online learning, as well as feature hashing, ensemble methods, and optimization, just to name a few. Shogun in addition contains a number of exclusive state-of-the art algorithms such as a wealth of efficient SVM implementations, Multiple Kernel Learning, kernel hypothesis testing, Krylov methods, etc. All algorithms are supported by a collection of general purpose methods for evaluation, parameter tuning, preprocessing, serialization & I/O, etc; the resulting combinatorial possibilities are huge. The wealth of ML open-source software allows us to offer bindings to other sophisticated libraries including: LibSVM, LibLinear, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, GPML and more. Shogun got initiated in 1999 by Soeren Sonnenburg and Gunnar Raetsch (that's where the name ShoGun originates from). It is now developed by a larger team of authors, and would not have been possible without the patches and bug reports by various people. See contributions for a detailed list. Statistics on Shogun's development activity can be found on ohloh.
PackageMaintainerFedora Project
PackageNameshogun-doc
PackageRelease2.fc24
PackageVersion4.1.0
SHA-1B19E3540BFB0874DF32A5AF8145E401CA499F7AF
SHA-256BB0495BEE2B8B9D8D92927920A7DA9B39A42F49760BB1472EBA3C68C16C00E0F