Result for 00FBA7475698D5B36F7C66654F754EC0C85A33B0

Query result

Key Value
FileName./usr/share/doc/shogun/examples/python_modular/statistics_quadratic_time_mmd.py
FileSize5095
MD57534FF607102A0CFCCE5754A3F4890DC
SHA-100FBA7475698D5B36F7C66654F754EC0C85A33B0
SHA-2565B696D78EF19588CB9C718A6CE71B4C580FC1525BD1F6A74374AB8A6917661F7
SSDEEP96:PPj253uXzi7gLNemeg0As/gCz9rBzsQIyLW:PbNjikLNemeRl5uP
TLSHT12CB1C635F743F23661D4228C872E058DF33699645732CC3540DCC77A32815A2573AF86
hashlookup:parent-total9
hashlookup:trust95

Network graph view

Parents (Total: 9)

The searched file hash is included in 9 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD59AFE7FB781D39DB05A5A5A63D1CB843C
PackageArchaarch64
PackageDescriptionThis package contains the Python3-plugin for shogun. The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to easily combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms. We combine modern software architecture in C++ with both efficient low-level computing back-ends and cutting edge algorithm implementations to solve large-scale Machine Learning problems (yet) on single machines. One of Shogun's most exciting features is that you can use the toolbox through a unified interface from C++, Python(3), Octave, R, Java, Lua, etc. This not just means that we are independent of trends in computing languages, but it also lets you use Shogun as a vehicle to expose your algorithm to multiple communities. We use SWIG to enable bidirectional communication between C++ and target languages. Shogun runs under Linux/Unix, MacOS, Windows. Originally focusing on large-scale kernel methods and bioinformatics (for a list of scientific papers mentioning Shogun, see here), the toolbox saw massive extensions to other fields in recent years. It now offers features that span the whole space of Machine Learning methods, including many classical methods in classification, regression, dimensionality reduction, clustering, but also more advanced algorithm classes such as metric, multi-task, structured output, and online learning, as well as feature hashing, ensemble methods, and optimization, just to name a few. Shogun in addition contains a number of exclusive state-of-the art algorithms such as a wealth of efficient SVM implementations, Multiple Kernel Learning, kernel hypothesis testing, Krylov methods, etc. All algorithms are supported by a collection of general purpose methods for evaluation, parameter tuning, preprocessing, serialization & I/O, etc; the resulting combinatorial possibilities are huge. The wealth of ML open-source software allows us to offer bindings to other sophisticated libraries including: LibSVM, LibLinear, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, GPML and more. Shogun got initiated in 1999 by Soeren Sonnenburg and Gunnar Raetsch (that's where the name ShoGun originates from). It is now developed by a larger team of authors, and would not have been possible without the patches and bug reports by various people. See contributions for a detailed list. Statistics on Shogun's development activity can be found on ohloh.
PackageMaintainerFedora Project
PackageNamepython3-shogun
PackageRelease2.fc24
PackageVersion4.1.0
SHA-11E14D77716A6EE4B1FB3E32602ACA5FDD294817C
SHA-256EE746E59B31204BAA5A20797C1522DF0E8A141B1353E1A82DEEEFC5F55183592
Key Value
MD5B4C3A3448402EB758E7704C34534F88B
PackageArchaarch64
PackageDescription The SHOGUN machine learning toolbox's focus is on large scale kernel methods and especially on Support Vector Machines (SVM). It provides a generic SVM object interfacing to several different SVM implementations, among them the state of the art LibSVM. Each of the SVMs can be combined with a variety of kernels. The toolbox not only provides efficient implementations of the most common kernels, like the Linear, Polynomial, Gaussian and Sigmoid Kernel but also comes with a number of recent string kernels as e.g. the Locality Improved, Fischer, TOP, Spectrum, Weighted Degree Kernel (with shifts). For the latter the efficient LINADD optimizations are implemented. Also SHOGUN offers the freedom of working with custom pre-computed kernels. One of its key features is the "combined kernel" which can be constructed by a weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain. An optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Currently SVM 2-class classification and regression problems can be dealt with. However SHOGUN also implements a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and features algorithms to train hidden Markov-models. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of "pre-processors" (e.g. subtracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. This build comes WITHOUT support for Thorsten Joachim's `SVM^light`, because of it's 'no-redistribute', 'no-commercial-use' license. This package contains the Python3-plugin for shogun.
PackageMaintainerFedora Project
PackageNamepython3-shogun
PackageRelease0.33.git20141224.d71e19a.fc22
PackageVersion3.2.0.1
SHA-1C0011E4B3C43B82FCFC05B5586A913410601304C
SHA-256B9287C5ECE56AB36C97CAFB0285A5B70CED0D04E6FFCE9E147094624A7B37FCA
Key Value
MD552FD8EB8EC2348D1E76EF4C3774BD7AE
PackageArchaarch64
PackageDescription The SHOGUN machine learning toolbox's focus is on large scale kernel methods and especially on Support Vector Machines (SVM). It provides a generic SVM object interfacing to several different SVM implementations, among them the state of the art LibSVM. Each of the SVMs can be combined with a variety of kernels. The toolbox not only provides efficient implementations of the most common kernels, like the Linear, Polynomial, Gaussian and Sigmoid Kernel but also comes with a number of recent string kernels as e.g. the Locality Improved, Fischer, TOP, Spectrum, Weighted Degree Kernel (with shifts). For the latter the efficient LINADD optimizations are implemented. Also SHOGUN offers the freedom of working with custom pre-computed kernels. One of its key features is the "combined kernel" which can be constructed by a weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain. An optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Currently SVM 2-class classification and regression problems can be dealt with. However SHOGUN also implements a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and features algorithms to train hidden Markov-models. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of "pre-processors" (e.g. subtracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. This build comes WITHOUT support for Thorsten Joachim's `SVM^light`, because of it's 'no-redistribute', 'no-commercial-use' license. This package contains the ChangeLog, a very detailed documentation, and some great examples for shogun. If you need the Chinese API-docs, you would want to install shogun-doc-cn, too.
PackageMaintainerFedora Project
PackageNameshogun-doc
PackageRelease0.33.git20141224.d71e19a.fc22
PackageVersion3.2.0.1
SHA-16B425709841A847AA3FC7B9406D58797384F2D74
SHA-256C000A7DBAAA5718314D0FD8C3AFA5BC92E7673CEAB57EEBFC678AF86BD6CBE2D
Key Value
MD5548696509A3684E8B7A8FC72D7B8EF2C
PackageArchaarch64
PackageDescription This package contains the Python-plugin for shogun. The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to easily combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms. We combine modern software architecture in C++ with both efficient low-level computing back-ends and cutting edge algorithm implementations to solve large-scale Machine Learning problems (yet) on single machines. One of Shogun's most exciting features is that you can use the toolbox through a unified interface from C++, Python(3), Octave, R, Java, Lua, etc. This not just means that we are independent of trends in computing languages, but it also lets you use Shogun as a vehicle to expose your algorithm to multiple communities. We use SWIG to enable bidirectional communication between C++ and target languages. Shogun runs under Linux/Unix, MacOS, Windows. Originally focusing on large-scale kernel methods and bioinformatics (for a list of scientific papers mentioning Shogun, see here), the toolbox saw massive extensions to other fields in recent years. It now offers features that span the whole space of Machine Learning methods, including many classical methods in classification, regression, dimensionality reduction, clustering, but also more advanced algorithm classes such as metric, multi-task, structured output, and online learning, as well as feature hashing, ensemble methods, and optimization, just to name a few. Shogun in addition contains a number of exclusive state-of-the art algorithms such as a wealth of efficient SVM implementations, Multiple Kernel Learning, kernel hypothesis testing, Krylov methods, etc. All algorithms are supported by a collection of general purpose methods for evaluation, parameter tuning, preprocessing, serialization & I/O, etc; the resulting combinatorial possibilities are huge. The wealth of ML open-source software allows us to offer bindings to other sophisticated libraries including: LibSVM, LibLinear, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, GPML and more. Shogun got initiated in 1999 by Soeren Sonnenburg and Gunnar Raetsch (that's where the name ShoGun originates from). It is now developed by a larger team of authors, and would not have been possible without the patches and bug reports by various people. See contributions for a detailed list. Statistics on Shogun's development activity can be found on ohloh.
PackageMaintainerFedora Project
PackageNamepython2-shogun
PackageRelease2.fc24
PackageVersion4.1.0
SHA-1E3E6A4FEDF7041E68EF4745557E0204BF2E35D6A
SHA-25688391DBA7A8281D237EA0E8AD8320291C531EEBBB27BBBDB65DD28F4C1C95042
Key Value
MD50C4979D4F74741B3776FB2EE58BBDD8F
PackageArchaarch64
PackageDescriptionThis package contains very detailed documentation, and some great examples for shogun. If you need the Chinese API-docs, you would want to install shogun-doc-cn, too. The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to easily combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms. We combine modern software architecture in C++ with both efficient low-level computing back-ends and cutting edge algorithm implementations to solve large-scale Machine Learning problems (yet) on single machines. One of Shogun's most exciting features is that you can use the toolbox through a unified interface from C++, Python(3), Octave, R, Java, Lua, etc. This not just means that we are independent of trends in computing languages, but it also lets you use Shogun as a vehicle to expose your algorithm to multiple communities. We use SWIG to enable bidirectional communication between C++ and target languages. Shogun runs under Linux/Unix, MacOS, Windows. Originally focusing on large-scale kernel methods and bioinformatics (for a list of scientific papers mentioning Shogun, see here), the toolbox saw massive extensions to other fields in recent years. It now offers features that span the whole space of Machine Learning methods, including many classical methods in classification, regression, dimensionality reduction, clustering, but also more advanced algorithm classes such as metric, multi-task, structured output, and online learning, as well as feature hashing, ensemble methods, and optimization, just to name a few. Shogun in addition contains a number of exclusive state-of-the art algorithms such as a wealth of efficient SVM implementations, Multiple Kernel Learning, kernel hypothesis testing, Krylov methods, etc. All algorithms are supported by a collection of general purpose methods for evaluation, parameter tuning, preprocessing, serialization & I/O, etc; the resulting combinatorial possibilities are huge. The wealth of ML open-source software allows us to offer bindings to other sophisticated libraries including: LibSVM, LibLinear, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, GPML and more. Shogun got initiated in 1999 by Soeren Sonnenburg and Gunnar Raetsch (that's where the name ShoGun originates from). It is now developed by a larger team of authors, and would not have been possible without the patches and bug reports by various people. See contributions for a detailed list. Statistics on Shogun's development activity can be found on ohloh.
PackageMaintainerFedora Project
PackageNameshogun-doc
PackageRelease2.fc24
PackageVersion4.1.0
SHA-1B19E3540BFB0874DF32A5AF8145E401CA499F7AF
SHA-256BB0495BEE2B8B9D8D92927920A7DA9B39A42F49760BB1472EBA3C68C16C00E0F
Key Value
MD5366F32020F8BACDF2CD383ED94A8C227
PackageArchaarch64
PackageDescription The SHOGUN machine learning toolbox's focus is on large scale kernel methods and especially on Support Vector Machines (SVM). It provides a generic SVM object interfacing to several different SVM implementations, among them the state of the art LibSVM. Each of the SVMs can be combined with a variety of kernels. The toolbox not only provides efficient implementations of the most common kernels, like the Linear, Polynomial, Gaussian and Sigmoid Kernel but also comes with a number of recent string kernels as e.g. the Locality Improved, Fischer, TOP, Spectrum, Weighted Degree Kernel (with shifts). For the latter the efficient LINADD optimizations are implemented. Also SHOGUN offers the freedom of working with custom pre-computed kernels. One of its key features is the "combined kernel" which can be constructed by a weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain. An optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Currently SVM 2-class classification and regression problems can be dealt with. However SHOGUN also implements a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and features algorithms to train hidden Markov-models. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of "pre-processors" (e.g. subtracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. This build comes WITHOUT support for Thorsten Joachim's `SVM^light`, because of it's 'no-redistribute', 'no-commercial-use' license. This package contains the Python3-plugin for shogun.
PackageMaintainerFedora Project
PackageNamepython3-shogun
PackageRelease0.33.git20141224.d71e19a.fc22
PackageVersion3.2.0.1
SHA-18E3E5FD3B34E9DA012715EBBB08D1A8B3840B554
SHA-2567521DEDAE5281A1913B3C75D2E17DF4CD8BF3C52227EE19259479484B04A2640
Key Value
MD50E5FFF4D21AE8D51F0BA1676F7C1B174
PackageArchaarch64
PackageDescription The SHOGUN machine learning toolbox's focus is on large scale kernel methods and especially on Support Vector Machines (SVM). It provides a generic SVM object interfacing to several different SVM implementations, among them the state of the art LibSVM. Each of the SVMs can be combined with a variety of kernels. The toolbox not only provides efficient implementations of the most common kernels, like the Linear, Polynomial, Gaussian and Sigmoid Kernel but also comes with a number of recent string kernels as e.g. the Locality Improved, Fischer, TOP, Spectrum, Weighted Degree Kernel (with shifts). For the latter the efficient LINADD optimizations are implemented. Also SHOGUN offers the freedom of working with custom pre-computed kernels. One of its key features is the "combined kernel" which can be constructed by a weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain. An optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Currently SVM 2-class classification and regression problems can be dealt with. However SHOGUN also implements a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and features algorithms to train hidden Markov-models. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of "pre-processors" (e.g. subtracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. This build comes WITHOUT support for Thorsten Joachim's `SVM^light`, because of it's 'no-redistribute', 'no-commercial-use' license. This package contains the Python-plugin for shogun.
PackageMaintainerFedora Project
PackageNamepython-shogun
PackageRelease0.33.git20141224.d71e19a.fc22
PackageVersion3.2.0.1
SHA-1CB5222B1E319A7E84B9D13FDA1331DF2FCD62C1D
SHA-2569DC2001C36EBC30CDB82873F91D973F7A4624262A46051B0C1CDDBCF7C0C8107
Key Value
MD5238979F9A06BCB35AC13A0EC7212902F
PackageArchaarch64
PackageDescription The SHOGUN machine learning toolbox's focus is on large scale kernel methods and especially on Support Vector Machines (SVM). It provides a generic SVM object interfacing to several different SVM implementations, among them the state of the art LibSVM. Each of the SVMs can be combined with a variety of kernels. The toolbox not only provides efficient implementations of the most common kernels, like the Linear, Polynomial, Gaussian and Sigmoid Kernel but also comes with a number of recent string kernels as e.g. the Locality Improved, Fischer, TOP, Spectrum, Weighted Degree Kernel (with shifts). For the latter the efficient LINADD optimizations are implemented. Also SHOGUN offers the freedom of working with custom pre-computed kernels. One of its key features is the "combined kernel" which can be constructed by a weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain. An optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Currently SVM 2-class classification and regression problems can be dealt with. However SHOGUN also implements a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and features algorithms to train hidden Markov-models. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of "pre-processors" (e.g. subtracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. This build comes WITHOUT support for Thorsten Joachim's `SVM^light`, because of it's 'no-redistribute', 'no-commercial-use' license. This package contains the ChangeLog, a very detailed documentation, and some great examples for shogun. If you need the Chinese API-docs, you would want to install shogun-doc-cn, too.
PackageMaintainerFedora Project
PackageNameshogun-doc
PackageRelease0.33.git20141224.d71e19a.fc22
PackageVersion3.2.0.1
SHA-1A34E8EDB663192FBCD8365C7741B89EF5C161B57
SHA-2562D3E44CD953AE0DEF8265D9F11BAB16E687E364AF995F54167E7ECA23226ADBA
Key Value
MD59DD6429D2095A7C040B95E7D59D6F695
PackageArchaarch64
PackageDescription The SHOGUN machine learning toolbox's focus is on large scale kernel methods and especially on Support Vector Machines (SVM). It provides a generic SVM object interfacing to several different SVM implementations, among them the state of the art LibSVM. Each of the SVMs can be combined with a variety of kernels. The toolbox not only provides efficient implementations of the most common kernels, like the Linear, Polynomial, Gaussian and Sigmoid Kernel but also comes with a number of recent string kernels as e.g. the Locality Improved, Fischer, TOP, Spectrum, Weighted Degree Kernel (with shifts). For the latter the efficient LINADD optimizations are implemented. Also SHOGUN offers the freedom of working with custom pre-computed kernels. One of its key features is the "combined kernel" which can be constructed by a weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain. An optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Currently SVM 2-class classification and regression problems can be dealt with. However SHOGUN also implements a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and features algorithms to train hidden Markov-models. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of "pre-processors" (e.g. subtracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. This build comes WITHOUT support for Thorsten Joachim's `SVM^light`, because of it's 'no-redistribute', 'no-commercial-use' license. This package contains the Python-plugin for shogun.
PackageMaintainerFedora Project
PackageNamepython-shogun
PackageRelease0.33.git20141224.d71e19a.fc22
PackageVersion3.2.0.1
SHA-1904BA589EF26FA8F74661C0B75FF7001CC99D394
SHA-256F144B5C64461F90BAA5B16B11C678ED7544406C95541951ECC85D186A5FAAAEF