Result for CB5222B1E319A7E84B9D13FDA1331DF2FCD62C1D

Query result

Key Value
MD50E5FFF4D21AE8D51F0BA1676F7C1B174
PackageArchaarch64
PackageDescription The SHOGUN machine learning toolbox's focus is on large scale kernel methods and especially on Support Vector Machines (SVM). It provides a generic SVM object interfacing to several different SVM implementations, among them the state of the art LibSVM. Each of the SVMs can be combined with a variety of kernels. The toolbox not only provides efficient implementations of the most common kernels, like the Linear, Polynomial, Gaussian and Sigmoid Kernel but also comes with a number of recent string kernels as e.g. the Locality Improved, Fischer, TOP, Spectrum, Weighted Degree Kernel (with shifts). For the latter the efficient LINADD optimizations are implemented. Also SHOGUN offers the freedom of working with custom pre-computed kernels. One of its key features is the "combined kernel" which can be constructed by a weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain. An optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Currently SVM 2-class classification and regression problems can be dealt with. However SHOGUN also implements a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and features algorithms to train hidden Markov-models. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of "pre-processors" (e.g. subtracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. This build comes WITHOUT support for Thorsten Joachim's `SVM^light`, because of it's 'no-redistribute', 'no-commercial-use' license. This package contains the Python-plugin for shogun.
PackageMaintainerFedora Project
PackageNamepython-shogun
PackageRelease0.33.git20141224.d71e19a.fc22
PackageVersion3.2.0.1
SHA-1CB5222B1E319A7E84B9D13FDA1331DF2FCD62C1D
SHA-2569DC2001C36EBC30CDB82873F91D973F7A4624262A46051B0C1CDDBCF7C0C8107
hashlookup:children-total341
hashlookup:trust50

Network graph view

Children (Total: 341)

The searched file hash includes 341 children files known and seen by metalookup. A sample is included below:

Key Value
FileName./usr/share/doc/shogun/examples/python_modular/statistics_quadratic_time_mmd.py
FileSize5095
MD57534FF607102A0CFCCE5754A3F4890DC
SHA-100FBA7475698D5B36F7C66654F754EC0C85A33B0
SHA-2565B696D78EF19588CB9C718A6CE71B4C580FC1525BD1F6A74374AB8A6917661F7
SSDEEP96:PPj253uXzi7gLNemeg0As/gCz9rBzsQIyLW:PbNjikLNemeRl5uP
TLSHT12CB1C635F743F23661D4228C872E058DF33699645732CC3540DCC77A32815A2573AF86
Key Value
FileName./usr/share/doc/python-shogun/examples/python_modular/evaluation_director_contingencytableevaluation_modular.py
FileSize1179
MD58D47DF72D4AB20F34D14CBFD3FC5224D
SHA-101D5D6CA66FE294142091B0319C0CA627F0CFEB9
SHA-25621C1DA61FA4478A04A28931D420222F5278DFAFA964B153BD7466D303531505E
SSDEEP24:m/r0F+VEMov2AIXvw+QIJtd+AdtAi0Dtr0LK2Ry6BNg5bClGT2v:mDFVSDA4Ov0ZAg5bCl82v
TLSHT16C21C1EC72F3A159B057615E23D054E620BAF9FB364C0C185AA907A80CE1D52F72783B
Key Value
FileName./usr/share/doc/python-shogun/examples/python_modular/labels_io_modular.py
FileSize351
MD5714CB87DE72D2F8A0F4E653D5D147513
SHA-102A4E6D418229E226A6373EC2B95915D281427C6
SHA-256B466C5217835F9535DF2397ACF0CF2EF6FC57A1B098AD9302FA9A214EABB917B
SSDEEP6:HWaH6u++1kvL2F8Rz03K6AyYFj56ZNY3Syk0c/Ni6FrJe018BAq2KVMqAYh7In:HSx8626Rz03KfywENG2iur80aPHx7In
TLSHT1D2E026EE95AA9131C0961D66BA904EB0A2FB6DA4338D646BD6843E04914ADE77C60221
Key Value
FileName./usr/share/doc/shogun/examples/python_modular/preprocessor_fisherlda_modular.py
FileSize817
MD51967F4D7D0C5A5F3A213FC4D65766262
SHA-1035EF599A5F9161876A433A432D68B29ADCA32ED
SHA-2562902CDB8EE3D64796B34C10045DAD0E94310A63B5C2E546C85F3FC13B45FC85D
SSDEEP24:U249J2JRgHN2HiD2M2gxxNA2XMaf4MBECv:qArgv/NAV5MmCv
TLSHT1C901C94FB93FA156CD96325AA0E04C569DFA7C892BA2181CD8586D1C43C2DD3B079366
Key Value
FileName./usr/share/doc/shogun/examples/python_modular/modelselection_grid_search_krr_modular.py
FileSize5347
MD5F16AEE4B8F7AB803307096782972FD8B
SHA-104A785BC3BCD5854DF381E80AF83F3D22D5EFC2C
SHA-256545DD4D5346D73D49E1D63DFBC50D8172408ADAE731704E2D2757FF51E9EBB08
SSDEEP96:wzRtMPMGoCarffctDqJOL+aEhzzDFR/7vrdUHU:qnuBabfctDuOadhzzZR/rpqU
TLSHT137B1B3103669733961174ADF74EB146887BD45AB3AC9200CB68C9B280F5FAB1F93774E
Key Value
FileName./usr/share/doc/shogun/ipython-notebooks/multiclass/Tree/DecisionTrees.ipynb
FileSize73423
MD56226706A5FE4EB5CEA4D9260E2284EF9
SHA-105AFEC5539FC5FCCA069AC471FD06B029B99C084
SHA-256F6D3D9A8DC9A75CB65D5C98DA2BBA772BA90A2668CE5C804401E6D0B2361C698
SSDEEP1536:5unUwCYKBkhmEGeeR+R7daceKrnSaJ4iyC:5unU7uweeR0NrSxRC
TLSHT146736329E4212E338A93A07A91DDC39173B752CB8E417C1C7B6C896C1F8D81F16B679D
Key Value
FileName./usr/share/doc/python-shogun/examples/python_modular/kernel_sparse_poly_modular.py
FileSize951
MD50E21F90115DE3F95FDE30A48A3CC3425
SHA-105B504BFCAC30D285B622500926D2CB6E34D88F9
SHA-25602D1302FCFA9C434B77F6C01F446878F147ECFE375D6A63502A620D963A1AEBF
SSDEEP24:qhrkbpsJaJfrb3xSts2n20SeIT1dThL4vXTk4MKjn:MkWEN8tlSe2HavXPMKjn
TLSHT18611908B86E7F012F87134AD64E82C5B66E7E48E0B4351099748C7201B979C3F4AF1DE
Key Value
FileName./usr/share/doc/python-shogun/examples/python_modular/regression_least_squares_modular.py
FileSize1069
MD54BD0BB3127FE9768BDA2C813A20A4EC0
SHA-106780EDDFB822E21FC65C8D2A051233EDD7160CE
SHA-2568E0B32B0CAFD7084856A822E49F4826B2D685E36A1A88718B8E6325E9C58B509
SSDEEP24:I01KacJaJyQrpK8fb2KS2CriXK2aBzG93O9n:do3E0C4iXr3O9n
TLSHT183117D0B5B26A020CFF6E52E24A5299507F6DD4B2F874409DB8C2B1403DB3DAF4D1189
Key Value
FileName./usr/lib/python2.7/dist-packages/shogun/__init__.py
FileSize242
MD534E9B6980AB242BE93EFE874B10E5ED1
SHA-106F6600BA581F182813519535E23A2D1757CE6A0
SHA-2568847B1B3CCD4CBAE012A9F2C84AD79EFA68AEC665E6084CA24AED29830926C82
SSDEEP6:UYXJfAhc4NfQqvf/pHt1M6FYZfm+hHWtNjHWxg:UWJoh5fQaJHtG6+4G2D7
TLSHT1FAD0A71823184D5FD9F7D361306119661D3C0ED75F546A7AC464846D0A6E870A2A3E5D
Key Value
FileName./usr/share/doc/python-shogun/examples/python_modular/graphical/smem_2d_gmm.py
FileSize3771
MD508E9F489F87ABCC0F3038473B5D4EDE5
SHA-107826896DD48BD38E0E1B180552452F1CD02FC2E
SHA-25670DF3C1B8C5AB3C2E9B34B135F7B497111683DE492BD6BB9F976B00A38A8DB06
SSDEEP48:NRmUP4ryedAOt7vNq4JZgIa813QOmlibd/rd/VnpNBguw9Dsk5Aq:5ELt7vNwIxQOFblrlVnpNBguw9Dsk51
TLSHT1C371D321A9A5CFB703D0CCE9A8D4009707399176BA10CCAD21AF5E7747E387CA5AD771