Result for 0815DC732D6EC041C9420A1867AF1950773087B8

Query result

Key Value
FileName./usr/include/kido/dynamics/RevoluteJoint.hpp
FileSize4468
MD51013B31C6F494E3C13C071CE3DE51E01
SHA-10815DC732D6EC041C9420A1867AF1950773087B8
SHA-2568FD566746EF797EDA5B1F12F7DD17797C5AE329FE51F700EC554A7A5E20DF3C6
SSDEEP96:o76Y6rYJd0rYJTLx13A53PN6BOhjocmrJCF:o7h6rsqrs373G31IOhjVR
TLSHT1B191441865118EB197D204E29F825A43D8117077F6B1F6E1BBFFA3D80F8382D4A5A973
hashlookup:parent-total17
hashlookup:trust100

Network graph view

Parents (Total: 17)

The searched file hash is included in 17 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize136036
MD560C683443BA57D9A4DE53330EC2E6167
PackageDescriptionKinematics Dynamics and Optimization Library - development files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains main headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-6+b1
SHA-1000D7634EE1E434F7624AC5FA5DA54A47D86480E
SHA-2563CD16D589936CB3C9E0EDD02328CDD01F43E4E6AC7D473621A636E2F18EB291B
Key Value
FileSize136028
MD5A10ECA2185DFE920CC5238713E676688
PackageDescriptionKinematics Dynamics and Optimization Library - development files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains main headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-6+b1
SHA-122A49C680E0AF7127B10E306CD6D9A234CE4D638
SHA-25690D981FFD8FAA29100DB2ECFF4E4B09E7659050EBC5AB5549864E3D947742755
Key Value
FileSize135778
MD5D615ED14D954D76C1C363FAE1850878B
PackageDescriptionKinematics Dynamics and Optimization Library - development files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains main headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-2+b2
SHA-12C30B0220A37651352CF79580EF07DBB56E4CD35
SHA-256CAB37D8471CCFF567A3B69FE8B565659D5A6720E69105C96F446D99D8FBA294E
Key Value
FileSize135972
MD57E7BA6E64F974824A04A31FA88F19594
PackageDescriptionKinematics Dynamics and Optimization Library - development files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains main headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-6+b1
SHA-13319E4CE762C5E08CE044B09D2872F00685C9A63
SHA-256F815D3C8EDA2C2860AEFEF81E12D4F7B4D2377C95C5F9A84155B026635557386
Key Value
FileSize135780
MD5C006F11A0932E09F430F528AD7FBE5F8
PackageDescriptionKinematics Dynamics and Optimization Library - development files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains main headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-2+b2
SHA-14E918EE166CD263A6217AA6F21A91BD3F1BC2318
SHA-256D4FC9C37E159636F2E9A196EFF84F4FC936D50538F0B326C8C1F16EDCFF32697
Key Value
FileSize135824
MD543033BA5A0C75C8A0732726C99F157E0
PackageDescriptionKinematics Dynamics and Optimization Library - development files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains main headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-2+b2
SHA-151324FDFBAC709ADF1C102A3E6BC22F26CCC01E6
SHA-256F77715429FBB27BCDFD5DD8941948C1836BD6F6172124DDDABBF444AFFB656C1
Key Value
FileSize135780
MD5BB6433DA9BAA23AC35351974DB1B10F9
PackageDescriptionKinematics Dynamics and Optimization Library - development files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains main headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-2+b2
SHA-155B7BAA9154BA8B241867C2E57FD78110595C6A8
SHA-2568E5B1A8A6F7CFF934FDDE9009E7E11D00C206A2AACFCF84B17D74272AACCC62C
Key Value
FileSize135760
MD5B27185AB75C1E521194CFF328AAD3D05
PackageDescriptionKinematics Dynamics and Optimization Library - development files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains main headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-2+b2
SHA-159B7D5F5FB555A91023A0E46F15BD9C7388C7C4E
SHA-25669621B0F94EF56D126C4DC0302F35BAAECB2CE56D198CD81AE0BBAC204B8B4C5
Key Value
FileSize129476
MD5C21990F98E196A7E28FE82846E485900
PackageDescriptionKinematics Dynamics and Optimization Library - development files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains main headers and other tools for development.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamelibkido-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-2build9
SHA-166F015E12184FCC584B887143B471595414F7B32
SHA-256B1933A727515DBCD733CE8EF135FD801C6931EDB7A60F3C87E917A7F235D03BB
Key Value
FileSize129500
MD5DB4A22E06A1C62701D25A030A5EAF834
PackageDescriptionKinematics Dynamics and Optimization Library - development files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains main headers and other tools for development.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamelibkido-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-2build9
SHA-170AE3598C9C1090E9C147D84D1380F9CD8B5A6C4
SHA-25660504A2DB0331C8951A9B99D1817F9AE5736DFFE7E484719F7E197D9E830A9DC