Key | Value |
---|---|
MD5 | 20093B191066E2B3C413FD2644EDF50F |
PackageArch | armv7hl |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python3-scikit-learn |
PackageRelease | 2.fc33 |
PackageVersion | 0.23.1 |
SHA-1 | D98B8D00AD3953C84B8054127546A3FCC82465AD |
SHA-256 | 25BE297BA6B732912E4C50F346269044AD14196A5D7D7BF937DFA419CE28C66D |
hashlookup:children-total | 1863 |
hashlookup:trust | 50 |
The searched file hash includes 1863 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib/python3.9/site-packages/sklearn/utils/_openmp_helpers.cpython-39-arm-linux-gnueabi.so |
FileSize | 25360 |
MD5 | C0393975A3F2FB1E9447E2F8A0E76383 |
SHA-1 | 0015EAD8CA897FC043F70C111835C003CE18C6CD |
SHA-256 | DE1DD260C684141DC740B645C4E8F5AF92F1D0ECDFB1C57E73011AD5E4D160D1 |
SSDEEP | 768:yWmvbQpNwkjOcmGBqpxu0nEM738Y4MBRGQKS:vybAEf7b8c |
TLSH | T172B2FA95F643DEB3C6802B3E775E8701B362C2B4C6DD2707690C49E45BE66664D6BF00 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/svm/plot_svm_margin.py |
FileSize | 2540 |
MD5 | 20F0800268AA3B127A61866BEB151FF0 |
SHA-1 | 001C2B7EF85E6BFACF735090F2C5E656263B182A |
SHA-256 | 800978E1EF0A17DAE6DEA3ECAB717245DEA9CDBA8F649D4E4A2877352DB3E680 |
SSDEEP | 48:CdEGkJVbTOXwNUh6EPXu6HSghmkhslNMftKVGbioWGF:CvQcX186HIkh6Sms |
TLSH | T140517401364C73B09B4381983DE7ADB57761A17F5D80282FB1AD6244CF18BAAD739D8A |
Key | Value |
---|---|
FileName | ./usr/lib/python3.9/site-packages/sklearn/neighbors/_kd_tree.cpython-39-arm-linux-gnueabi.so |
FileSize | 356196 |
MD5 | ED2CB9471EF0C8EFB4797E09EDBD2426 |
SHA-1 | 003C2ABD3C60795A1E37E55D1C3B3B53C726AF2B |
SHA-256 | B64CEB41A0B30A51592CCBE252F7011B022BDC92D091DFAC7B1F5E1DBD80CF72 |
SSDEEP | 6144:mYejqfKkRz0pKsnPSuwtseo4P7HGgs6p/gmCTzxa8iBD1v42MJpkQ:RdffCK4PYs4P7HGgMBTe |
TLSH | T132741A15F941CB72C6D82A73726D664433170B35C2EE320D5E18EEB47BE69AA0D3FA44 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/applications/plot_species_distribution_modeling.py |
FileSize | 7970 |
MD5 | 46FB3C87E92A0D145492F244860459FD |
SHA-1 | 005689838EAB53866B9804164514E5CC80C8E08D |
SHA-256 | A34FA8826C4DE8FA6B695DC1AE85FA4F4EE0B4D12062B4CEF9EF213479E14DD9 |
SSDEEP | 192:ooYmsjw0Kq7Ib808OR2eo+1MWKI1SPPcTzcHF6eVIQ2:4nxh02eo+1tSPMz66eVIQ2 |
TLSH | T1DFF10A27BB453769B74380ACAF9D14C3B737891F99903468B76C80802F1D338EA3EA55 |
Key | Value |
---|---|
FileName | ./usr/lib/python3.9/site-packages/sklearn/neighbors/tests/__pycache__/test_neighbors.cpython-39.pyc |
FileSize | 40415 |
MD5 | 49474FDE1E7F61519CF0C00A31C1F6E2 |
SHA-1 | 0072903F3345797136DCAA4EC05D4FD5DEEDFB55 |
SHA-256 | EA6A3C6A526A44A3750C9ADA8BE9C884E6DE4FB83DA716775D42EB70E04A912A |
SSDEEP | 768:uoXNH1ZhtOBdNHi53aFYp77FlyGV/vG9pOqvpAGYmJOPSqfw1mWNG+5XQI59kPLx:uoXNH1ZnOBd053aSfFlyGV/vG9pOqvp2 |
TLSH | T1F90339BCB166E98BF976F1FE012503548998CB9C93D7CA47AA24D21E7D103952F325CC |
Key | Value |
---|---|
FileName | ./usr/lib/python3.9/site-packages/sklearn/linear_model/tests/__pycache__/test_theil_sen.cpython-39.opt-1.pyc |
FileSize | 8124 |
MD5 | CFDC0C7604932760101AC7028E1CE190 |
SHA-1 | 011CB691590F2546465C78DF1C664E6091F689C8 |
SHA-256 | 320C495ECB68A996498AA13BE2A0B1F65D9D8034EE59A0A9A8FB52AF547D9D59 |
SSDEEP | 192:H2CHQBZP8u0cDKxmedQKLbjus1DeuNVb1avs98NDcjc:76P8u0cOXKKfasxeuNGEKlcg |
TLSH | T146F1C6E1EE8A4E0AFCA6F1FD443E06141A10D3567BEFC263E92480AE3D647D11DB6A45 |
Key | Value |
---|---|
FileName | ./usr/lib/python3.9/site-packages/sklearn/__pycache__/random_projection.cpython-39.opt-1.pyc |
FileSize | 20481 |
MD5 | 3B0DC9ECFBBFF4CF73B318FE2D2F9046 |
SHA-1 | 016CCD739DC2BF7EDCC83F7B7CB731B7785605D8 |
SHA-256 | 1AE53313531E3283927B87490ED9212F73C06CE927FCB41F5A7B3B92FBF6384F |
SSDEEP | 384:2mVnlcdMrFuqDgYZFyZ7ERPFXx8fTwT9gt2GeTbW6g+mbVsd20marE8VSyBa8fbJ:2mXcKrFuqDdZF67ERDSO6treTi6g+mbe |
TLSH | T18A92D6113A842379E7E7E4B1A6FF5813D7F9A067A7D26422349D80A82F52531317F2CE |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/applications/plot_face_recognition.py |
FileSize | 5673 |
MD5 | E04463D133077965B621853B417E3976 |
SHA-1 | 01A05E69B658947C8718FF96E63992BD7120AFD8 |
SHA-256 | 95EF36678B93D317074819E512B6EB9FD41AD6CF42BE577F6C95F233494D0C95 |
SSDEEP | 96:/WrdZDdY/G+XcXjnW+eV4fcQAY8vxucweFmVFG6kgIOrzTmd1ljF9bw2sbwnHqlN:erbzeV4fcTY2IcxidksKR93sRlZ5Ey |
TLSH | T128C1B57A7A6B3B71D3A760B9A9EC38B43720504E0DB30515338D42D00BB2F78676399A |
Key | Value |
---|---|
FileName | ./usr/lib/python3.9/site-packages/sklearn/linear_model/tests/__pycache__/test_huber.cpython-39.opt-1.pyc |
FileSize | 5493 |
MD5 | EE35B5FA2C53CB196DA5B095486350EC |
SHA-1 | 01BF41A2BDC1365F33125E7DDAD3D639CC099EE3 |
SHA-256 | 71332AF6C78743B2E73163C12FD0A782CC69A2CD0DBC42F0EBF9CFE85FBCACA4 |
SSDEEP | 96:UHFPXtip/X7sSXmMX/VbuVzXEX9EXUSU/lXXGbMGB5XviKXLCmMhtX31+BDXgnuQ:KVip/YSBluVz0NE7YWIW5qKbqjnABwn/ |
TLSH | T198B1C6D098875E2EFCB4F3F8701E061919A0D76693CBF8191898B15D0ED65C71DB7970 |
Key | Value |
---|---|
FileName | ./usr/lib/python3.9/site-packages/sklearn/metrics/tests/__pycache__/test_ranking.cpython-39.pyc |
FileSize | 38072 |
MD5 | ABACD49C8FA52A90ECD4A27B68793838 |
SHA-1 | 01C2F2D4BC916C1D4AB6ECE52ED628D8C7837299 |
SHA-256 | 042E6AEF7287586D13BCE0168DF9FC24CA80DC9F63E1D1A6678EC92A54452294 |
SSDEEP | 768:I3YP/Clc7t9iyoEOEyygZt1SD0M4LMMI2IN6TyvKb7LcJmHYKbY6pep:EPhXhxLLI26/STUwK |
TLSH | T1CF03C6ABF8435D6EF911F0F980693310839E832CFB42D743AD15D55EAC527EB4E29688 |