Result for 01BF41A2BDC1365F33125E7DDAD3D639CC099EE3

Query result

Key Value
FileName./usr/lib/python3.9/site-packages/sklearn/linear_model/tests/__pycache__/test_huber.cpython-39.opt-1.pyc
FileSize5493
MD5EE35B5FA2C53CB196DA5B095486350EC
SHA-101BF41A2BDC1365F33125E7DDAD3D639CC099EE3
SHA-25671332AF6C78743B2E73163C12FD0A782CC69A2CD0DBC42F0EBF9CFE85FBCACA4
SSDEEP96:UHFPXtip/X7sSXmMX/VbuVzXEX9EXUSU/lXXGbMGB5XviKXLCmMhtX31+BDXgnuQ:KVip/YSBluVz0NE7YWIW5qKbqjnABwn/
TLSHT198B1C6D098875E2EFCB4F3F8701E061919A0D76693CBF8191898B15D0ED65C71DB7970
hashlookup:parent-total1
hashlookup:trust55

Network graph view

Parents (Total: 1)

The searched file hash is included in 1 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD520093B191066E2B3C413FD2644EDF50F
PackageArcharmv7hl
PackageDescription Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts.
PackageMaintainerFedora Project
PackageNamepython3-scikit-learn
PackageRelease2.fc33
PackageVersion0.23.1
SHA-1D98B8D00AD3953C84B8054127546A3FCC82465AD
SHA-25625BE297BA6B732912E4C50F346269044AD14196A5D7D7BF937DFA419CE28C66D