Result for A181323B293BAA908B728E03DE349F6DB2C1DF76

Query result

Key Value
FileName./usr/share/doc/libdart-collision-ode6.12/changelog.Debian.gz
FileSize2221
MD5C0743D650539FA28E837CB2B8A059EA1
SHA-1A181323B293BAA908B728E03DE349F6DB2C1DF76
SHA-2569BF26B81CC86CC027F528A6ED724705C6CF28416884CADF8A27BA51407ADEF46
SSDEEP48:XsIjNEW45jrA430THhhk+hunx3FzZdD5vbyRK6fS8lMXKKuoeZ:8IJ45jrA4ETHYL/tV6aZXKKuoa
TLSHT124412B1C487CB6056C4A621A864E1C92FA5062DC028F5235B6EB25A023349DBACCD3D9
hashlookup:parent-total10
hashlookup:trust100

Network graph view

Parents (Total: 10)

The searched file hash is included in 10 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize47920
MD5B515C8374E141DE6606531DE0600182E
PackageDescriptionKinematics Dynamics and Optimization Library - ODE Collision Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the collision library with ODE backend.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b1
SHA-1AEC767899F038FC0AE7192BBC5DD2F8E8B44B8A7
SHA-2562EADB490B0B92E00A7895A71A020338914AD514759A971818F310347696464A1
Key Value
FileSize44904
MD5343EB87D851459B7F8C6335BD9770071
PackageDescriptionKinematics Dynamics and Optimization Library - ODE Collision Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the collision library with ODE backend.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-1080197166D55691ECADFB37C8F6938B0ECC68749
SHA-256C4D587DC779783C42FA2F2776F67B70E95611F2155A73ED2EAA9BB8EA5705C09
Key Value
FileSize43376
MD5E482D96413D314968F0254F63E5931FB
PackageDescriptionKinematics Dynamics and Optimization Library - ODE Collision Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the collision library with ODE backend.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b1
SHA-1A778201A94E066F72844016C9750229179B10139
SHA-2561FBF955D4DAB0CC9429AB4E859F93A4CD745B89BD2D92B5A0B8065FD587AE955
Key Value
FileSize46528
MD577ACEA7247725BA52DDD938989965756
PackageDescriptionKinematics Dynamics and Optimization Library - ODE Collision Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the collision library with ODE backend.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b1
SHA-1F78C3A19A3EF0F5A8A47BDE48CF0AA9F12F07C6C
SHA-256D3526859E82A98FDAE0FDC9F2B31C315DE20806FAAF0E7FD43680D0A00E8E51F
Key Value
FileSize46508
MD5263D2F9D8781478DC10E2381A6A03DE4
PackageDescriptionKinematics Dynamics and Optimization Library - ODE Collision Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the collision library with ODE backend.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-1784241EB0EC1A3E1BB133E128FB4F19D978E3C71
SHA-256827D23B14213E2815D38CBDEEE82176F5BDF7C8E6BB67CBEA8AEA8F7C7FD4A35
Key Value
FileSize43300
MD5D8E15C5CDE43C0C497B2487776BD7B23
PackageDescriptionKinematics Dynamics and Optimization Library - ODE Collision Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the collision library with ODE backend.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-108375A5EEB760DE652D0544C9312C30A9816B87F
SHA-2564281E8274F79C3949FCB166BDBA582AA9C18131B750551D0293958624C6010F7
Key Value
FileSize44780
MD502173DA4C9D75A39C92C03DA98CDAB0E
PackageDescriptionKinematics Dynamics and Optimization Library - ODE Collision Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the collision library with ODE backend.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b1
SHA-14A1EDD5FC4639E39084AF12E8B6AF090347C2621
SHA-25637ADE15C061F1ED177C73F5E3781C95B44F53A0F9B752CDFF8FD3F86A0C44919
Key Value
FileSize44664
MD5FFA0AB90A61EF5AD649A58A0B74FBCA6
PackageDescriptionKinematics Dynamics and Optimization Library - ODE Collision Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the collision library with ODE backend.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-13A9B25C6E0FA86769544C3E4BD27A7420F836959
SHA-2561F0ECFC9740B5B753EEE65109C4AB487940DD8504958B060DBB258BE139418BB
Key Value
FileSize47864
MD5E19198EB7DB1D71107A99BCE69E651CC
PackageDescriptionKinematics Dynamics and Optimization Library - ODE Collision Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the collision library with ODE backend.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-106879777BC1132B23FD21BBD0ACF7F068642F274
SHA-2567A1E7718937CA380EE7A08D2D1BAEBF4CC9570E34981CBAA2CD9D397D8D41044
Key Value
FileSize44920
MD55EF1DE0BC1E9C9C353547C8877F59917
PackageDescriptionKinematics Dynamics and Optimization Library - ODE Collision Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the collision library with ODE backend.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b1
SHA-1E0B6A2BA14CBA45A9893A0822D99FCB0F096D1B4
SHA-2567ADBBC902AB291A7DE5BC06272E2B9E976B4E7F2A8188288571AD739F7439C54