Result for 809E2E730559C8F6F7AFBD0EAE5F6251B2045E94

Query result

Key Value
FileName./usr/share/doc/libkido0.1/changelog.Debian.ppc64el.gz
FileSize222
MD56F05A06393AE9059EFDB1700F671A304
SHA-1809E2E730559C8F6F7AFBD0EAE5F6251B2045E94
SHA-256E405A3F0A06ACFAF3CE1D52E750CE8FF914B4BA0151AE8CE6922E7DF222FE850
SSDEEP6:XtE1adz4s0loaGINdDwcB3qc9/ASOoLYr/E:XOadcsipGINdDweTFAHM
TLSHT1D2D0973000A048AAA3208531310460602C8334009DA2CDC3336E333813D99728265A4D
hashlookup:parent-total14
hashlookup:trust100

Network graph view

Parents (Total: 14)

The searched file hash is included in 14 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize135778
MD5D615ED14D954D76C1C363FAE1850878B
PackageDescriptionKinematics Dynamics and Optimization Library - development files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains main headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-2+b2
SHA-12C30B0220A37651352CF79580EF07DBB56E4CD35
SHA-256CAB37D8471CCFF567A3B69FE8B565659D5A6720E69105C96F446D99D8FBA294E
Key Value
FileSize23738
MD523D689CEC3422B71CEB0662F4A66CE01
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer lib KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the ipopt optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-optimizer-ipopt0.1
PackageSectionlibs
PackageVersion0.1.0+dfsg-2+b2
SHA-110D3D755C46816DB23160E50D5867E7EA34F6890
SHA-256D6D6FAE189727400EF9CD33C47B325825E49A8345EC30A2501B62BD6B8B45CCA
Key Value
FileSize11250
MD5D42DFC6C84A9CEC5B0E62AACE7F6675E
PackageDescriptionKinematics Dynamics and Optimization Library - optimizer dev files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains NLOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-optimizer-nlopt-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-2+b2
SHA-1224B6AD6394D80D9F04CF07F9896E20359FCCD71
SHA-2567A249759832D33FCC36398E3F749FA9851E8ECEFECC0D2BA0068D6CA6C12779E
Key Value
FileSize33214
MD530BF1FAA03B5C3CFD77F907A6815CF57
PackageDescriptionKinematics Dynamics and Optimization Library - gui dev files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI headers and other useful tools for GUI development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-gui-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-2+b2
SHA-125564A3C3BBCBCD86364E544EF3872D2958A36B8
SHA-256C3E09BF7FACFFB2CCD7EFA824C61DB0607BEE792760E11C2B9F2E2F3368A3B36
Key Value
FileSize116716
MD5BBBEE9F6253226FAF54B1A7C58032D67
PackageDescriptionKinematics Dynamics and Optimization Library - planning library KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the KIDO planning library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-planning0.1
PackageSectionlibs
PackageVersion0.1.0+dfsg-2+b2
SHA-18A308EC57902940ED56CA2EC9D5DF3D170FB9683
SHA-256DDE5C42FC7AE9619BA74C94D18200FC61D717AF93B281801EE0290945A4F57C1
Key Value
FileSize828244
MD5A6A69545F0BEFE649A14338404803F25
PackageDescriptionKinematics Dynamics and Optimization Library - main library KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the main library of KIDO.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido0.1
PackageSectionlibs
PackageVersion0.1.0+dfsg-2+b2
SHA-146C9C525838FA61C29500ABB006C9E3C6153A12E
SHA-256E3E100A3CE746BD84D15901A9B35413F37A6989BB40FAAF7E7980AB825BE160A
Key Value
FileSize65350
MD5A9B08ECFBA268643F08E7579BCAEDC6D
PackageDescriptionKinematics Dynamics and Optimization Library - gui library KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-gui0.1
PackageSectionlibs
PackageVersion0.1.0+dfsg-2+b2
SHA-1F4BDE5A1452F564C5187C3D3D5CF51AFE7EDB81A
SHA-256580FF5858FA24FA1D5131D1B052E322C1360BBB7843F63A74E90E1DCC89C1074
Key Value
FileSize11816
MD51B68B97DCCAB2FA4657B74A5D21F2CD0
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer dev KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains IPOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-optimizer-ipopt-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-2+b2
SHA-12CA1B12141C556BEA119C64DD287FAB477D04ECF
SHA-256227DCA58697098674965EEEF3A38212293A255B4656C47E5470053E90DF079DB
Key Value
FileSize194100
MD59A5C89A629B01CA78884B1ED385239C3
PackageDescriptionKinematics Dynamics and Optimization Library - utils library KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the KIDO utils library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-utils0.1
PackageSectionlibs
PackageVersion0.1.0+dfsg-2+b2
SHA-125CDD2A2D02486C47866D75E5FB37334E6AF8EB5
SHA-2560A8A8A062E93A553469B1C9FA60D14C882961EEE47CCACE4449DBAD410FB4384
Key Value
FileSize138188
MD59EE859C16110B42889BFB64574BEEE3A
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg library KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the GUI OpenSceneGraph optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-gui-osg0.1
PackageSectionlibs
PackageVersion0.1.0+dfsg-2+b2
SHA-1F442A935C27E9613D6370576CB96B6943A348281
SHA-256A6DDBFD10C42EA22EBE40EF406C57933ED7B51B8A38E8F3DA9505F582A58BB54
Key Value
FileSize21328
MD564722CAB450EDE597E6E684844C3277A
PackageDescriptionKinematics Dynamics and Optimization Library - nlopt optimizer lib KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the NLOPT optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-optimizer-nlopt0.1
PackageSectionlibs
PackageVersion0.1.0+dfsg-2+b2
SHA-119BDFBB4EC786370F0DC014787B37722874435C2
SHA-256E21ECA1E119DBF6F286B4B40A5FB1921CAB97B6688CF4A1CD9F2E1EC5B78222E
Key Value
FileSize22636
MD5EE0C458BE908B202428AA7F4C4EF9D29
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-gui-osg-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-2+b2
SHA-1E11CAD8D07F539302B5251F3FCB4605B0563CD44
SHA-25689C6FD0E48FD3F6EE6E59C22B8C0AFB32A6F267A03C1FC9FF63AA555A693114E
Key Value
FileSize19232
MD5177A3341662AD81AB66CDBD2AA792500
PackageDescriptionKinematics Dynamics and Optimization Library - utils dev files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-utils-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-2+b2
SHA-10FDD37B2D0F69E8D06DC0207C594162100471D0E
SHA-256B7FA9617581402BDA563958DA2536B1694899A845A57B95ACD21066FB94CBD2D
Key Value
FileSize16044
MD54CFD0190F44F9F6E8AD457952D99FAAB
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files KIDO is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. KIDO is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, KIDO gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. KIDO also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, KIDO uses FCL developed by Willow Garage and the UNC Gamma Lab. KIDO has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibkido-planning-dev
PackageSectionlibdevel
PackageVersion0.1.0+dfsg-2+b2
SHA-10BFE5BEEAA14664C8785D58AC9541A5CA311089C
SHA-2569FEDDC383DB3E96FF29A4A6FF2A130014A270B485FE79F89199869D58F347FC5