Result for 722C947C0BBFE1DC2CC6F840330B46E1D772E451

Query result

Key Value
FileName./usr/share/dart/cmake/dart_utils-urdfTargets-relwithdebinfo.cmake
FileSize941
MD5EA6969371024F90A62B1361D42A03B2D
SHA-1722C947C0BBFE1DC2CC6F840330B46E1D772E451
SHA-25668F33BD4020642D04C8558E1A91F98541CC2BF17A44C8492BE25AB5C36311CBE
SSDEEP24:x3m7dS0qUMYAEQfuI9ijhZIhfkjh3yjUu:FJUMmyi2kkUu
TLSHT19C11EF314F8B0EBB479BCC8235951104C8F0C7BBE7AB2A6F4C64196901D8A9A410E80F
hashlookup:parent-total3
hashlookup:trust65

Network graph view

Parents (Total: 3)

The searched file hash is included in 3 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize24280
MD5F6FCC2673B0B7086F715DBD6D4F8E48C
PackageDescriptionDynamic Animation and Robotics Toolkit - URDF Component Development Files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains urdf utils headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf-dev
PackageSectionlibdevel
PackageVersion6.9.2-3+b1
SHA-1CB770639007E6683D568E56B4FF1A649BF4EB727
SHA-256DBDF1DB30B438A449583071B9EA6964989A316E4D988AE3A7CD68FA2ABD03FF8
Key Value
FileSize24280
MD557ED02F59AA522D8BAE3C30FF96B7F77
PackageDescriptionDynamic Animation and Robotics Toolkit - URDF Component Development Files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains urdf utils headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf-dev
PackageSectionlibdevel
PackageVersion6.9.2-3+b2
SHA-18002EEC4433A0AC3DE26735AE6F748BB20A08244
SHA-256720DB4165149C1B28188235B215FB7DB76B5DA4B5551350EBFFB065ED45C31B6
Key Value
FileSize24192
MD57F8D9DE823A94B147CFF3B1275259EE8
PackageDescriptionDynamic Animation and Robotics Toolkit - URDF Component Development Files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains urdf utils headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf-dev
PackageSectionlibdevel
PackageVersion6.9.2-2+b1
SHA-17E222949D3E1F82341D9B116258EC5985220EF85
SHA-256139AF84210A3F79457FAD25F63CDF857B0BF026F1B02D686DA7DA8CC931ABCA7