Result for 6EF2D49C6F85AEE019C98328E6EEE150EB514E1D

Query result

Key Value
FileName./usr/share/doc/libdart-external-ikfast-dev/changelog.Debian.gz
FileSize2123
MD58C060C4E0C89DAECBB78BA5756DF6CA9
SHA-16EF2D49C6F85AEE019C98328E6EEE150EB514E1D
SHA-2567B75F634FD2A1700A0ABCF5B9AACFBC3C48B0062BE7E30A21460FAA7F16E60C0
SSDEEP48:XjvVRcsRrx+VAhdwUXMgInGHcTDt49oOj/d:zv5j+5UcXn+oOjV
TLSHT1BA413A20A5C974682BE5E35E77C3C36F40D66896C13DE410A30A75B79A93C831C943B0
hashlookup:parent-total11
hashlookup:trust100

Network graph view

Parents (Total: 11)

The searched file hash is included in 11 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize28080
MD53DCA3E2569F20F4954D629E87E077691
PackageDescriptionKinematics Dynamics and Optimization Library - ikfast dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains ikfast headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-ikfast-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-12FBA6D8B45FDA3F9C3C456A8E1E3FEBC676D514E
SHA-256598F13B8D8052E9405C117DCA2A307F03682CEA0E2F71AF7E3860C28714150C5
Key Value
FileSize28072
MD546325A0E07E7FE5C73460A125E084724
PackageDescriptionKinematics Dynamics and Optimization Library - ikfast dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains ikfast headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-ikfast-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-1843B02D618CEB29695218036FDA34EC07A090075
SHA-256D93FA157077E7F3EA20FD0FC6C438C76943E8B4031737E581F3F11BFF7331163
Key Value
FileSize28092
MD59F6B07E7DEDF888A96BA10D249A48411
PackageDescriptionKinematics Dynamics and Optimization Library - ikfast dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains ikfast headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-ikfast-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-1EA70BC3024C83E4D4AC683F8DF7A8BF8A075CE3C
SHA-2568911755EA711CB9131DCDCBBC0E163807B1F50EB0EAA6E4CF3AED2E8C7D2D054
Key Value
FileSize28092
MD5F1614F1A7C743A9106BEA8D06CED94AC
PackageDescriptionKinematics Dynamics and Optimization Library - ikfast dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains ikfast headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-ikfast-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-15AE58236374D4177E9FA270728FE3A79DC5B1387
SHA-25666204C50D6223C8FDF7C9B381FAB171EC6CAF09325DF8595E95979689583A086
Key Value
FileSize28084
MD545C05A89D9C8F2EDA7F9C39A012EE06F
PackageDescriptionKinematics Dynamics and Optimization Library - ikfast dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains ikfast headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-ikfast-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-18DF6E52F6007D9B9FF6CE40FE21E670411E40F11
SHA-256CBB9CC74F3DEA11B0A5BE41608ADC625A3C714B257E6C44595373357B7D368CC
Key Value
FileSize28084
MD5871EC9A7FA95CE4E46317516C28668EB
PackageDescriptionKinematics Dynamics and Optimization Library - ikfast dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains ikfast headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-ikfast-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-1070966B29860584FEF1BFF7687B10B1484A6EDFE
SHA-256753E48737DF02C33D0EB157C7C8B4A58C6E60BB132F4F6B5DA1A94366C3AC082
Key Value
FileSize28076
MD5DDFF6C61999D80D748BE1322498BC93F
PackageDescriptionKinematics Dynamics and Optimization Library - ikfast dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains ikfast headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-ikfast-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-18009EF7166A53C93841A25E803AD7CF8F9E4EEB2
SHA-2568BFA3969A3DEDDF121EBF4E2071E81F03AD27816A4F52711D85EF01201CDA14C
Key Value
FileSize28072
MD525283B525BDE74904DE941E44AD082E5
PackageDescriptionKinematics Dynamics and Optimization Library - ikfast dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains ikfast headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-ikfast-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-175F3B99F74C7CFE1D79A6EC1C27D0E2F3B8B080C
SHA-2564B3715ADE669A1FC19014C46F438E71B9E24EB2E8B6C72EFA76F5F3058A8BB21
Key Value
FileSize28088
MD5B9835ACE9B8991CC8E1B0868326643F0
PackageDescriptionKinematics Dynamics and Optimization Library - ikfast dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains ikfast headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-ikfast-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b2
SHA-149A8321AFE07C59B216DA7367719EEF48C6F29AF
SHA-256B5109C69BB5ED793AF35616443D008786E30A3264F721851824DECCDDFA2E967
Key Value
FileSize28084
MD5E2F9BC3A3C6A49129A9F7C388DD5E42F
PackageDescriptionKinematics Dynamics and Optimization Library - ikfast dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains ikfast headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-ikfast-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-115AF222B32F67FB37C40DD304B2FB5DBA2B8A293
SHA-256065479BEB7CFDF9F91106B6E3B47FA903D2604E943BBB26DEC17888B1F98B44F
Key Value
FileSize28100
MD5CD9D9EDE1158439F903C946F2798A5C9
PackageDescriptionKinematics Dynamics and Optimization Library - ikfast dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains ikfast headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-ikfast-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-11FC7EE231E7384363125CDCD33005D1433500E2E
SHA-25650B6B01BA857D611CD8F328C1CF3C926809F0321E43F0F861F9F7F330BCB6B3D