Result for 64D2AAB3AA9F2F512B3FE56141E446BCF2DE6738

Query result

Key Value
FileName./usr/share/doc/python3-dartpy/changelog.Debian.i386.gz
FileSize227
MD5A9B6E9F71634D39A162B42D3E77B3CBB
SHA-164D2AAB3AA9F2F512B3FE56141E446BCF2DE6738
SHA-25654893904187266E5F319D52E4348399F59F4156954F12F4BED237CB71761A293
SSDEEP6:XtKz+kcMLsT1phKJN+NH0dv1sWJPkqUoq3ll:XqcMLWjUJN+svOWKq2ll
TLSHT1EBD0231BD8A704D3D5C28F3254EC925D4E370242B200DA40005FF0C145E800D3CF091C
hashlookup:parent-total28
hashlookup:trust100

Network graph view

Parents (Total: 28)

The searched file hash is included in 28 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize47864
MD5E19198EB7DB1D71107A99BCE69E651CC
PackageDescriptionKinematics Dynamics and Optimization Library - ODE Collision Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the collision library with ODE backend.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-106879777BC1132B23FD21BBD0ACF7F068642F274
SHA-2567A1E7718937CA380EE7A08D2D1BAEBF4CC9570E34981CBAA2CD9D397D8D41044
Key Value
FileSize34476
MD5DD61D61941344D3EA8E3695211116CC8
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains odelcpsolver headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b2
SHA-117D4761A44DE559AADE327102CACC254FE733314
SHA-25671BE6B368D8BCEB0AB4A6F47DDFE383F8CC802821ECA0D202C4820A5652731E5
Key Value
FileSize28152
MD5F7546C1F3FD606E380CA9B0536A751AF
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains IPOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-ipopt-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b2
SHA-118E33D86D61B933992E8331C84C1393D2F5EDEC2
SHA-256A6348784DCCE20B71101BB58FDA3AEA737D934744AEE77A73A781F14FBCAC8F6
Key Value
FileSize377684
MD592CF8A5A1A921C693D58CD984906E393
PackageDescriptionKinematics Dynamics and Optimization Library - utils library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the DART utils library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-11BFA418D929A16DD4D568B7D795D09B5A51D6524
SHA-256953591056A071F90EFE38E99008AE134CA742473710B451F91B19704684EDB90
Key Value
FileSize103548
MD5F42E0AB40CA296F255E8294FF96F5802
PackageDescriptionKinematics Dynamics and Optimization Library - gui library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the GUI library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-123CEA4D00E8E450E82E00D3FBEBFB18381B4ACF5
SHA-256869B18ABA9F877DC88242D3A233D5A28AD7BC1040E819DEC2F6DB98244295936
Key Value
FileSize81356
MD598A4F9D134D03F8E4C7A92F5F4569414
PackageDescriptionKinematics Dynamics and Optimization Library - Utils URDF Library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the Utils URDF library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-133491AAC1E43B5EBEA08EB79180615575114B46C
SHA-2564F815F438E93BF60F082972DCA5BCA6D5437961DB7211A471841633877B4BB3A
Key Value
FileSize181112
MD5FCB242CDE844AB6793810CDBD2B07DB5
PackageDescriptionKinematics Dynamics and Optimization Library - imgui dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains imgui headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-imgui-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b2
SHA-134F88D4BC70AEE618D083094975C639D2A8F7AAE
SHA-25674711DF7CE148F1C314DD9E7179A342683A5914A817BF552F597905251AA0DEE
Key Value
FileSize37380
MD52E2462CD895908874C7E6D6C8751814A
PackageDescriptionKinematics Dynamics and Optimization Library - nlopt optimizer lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the NLOPT optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-nlopt6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-144645ADC2AB7428A6A6E72015B0B8CF6B49E9B6F
SHA-256AB0AD614CBB0EEC9F4A32162E10FF01925C003D71B7DDE794508EA8CA7D16BCC
Key Value
FileSize39312
MD544E2EF81DBC4F97391562EE2B671A710
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the ipopt optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-ipopt6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-147D31E96385F7EA2233BD890AB3D220387D6100A
SHA-256895196904A733F194ED832A447331BBF0714BBBB2AB7A05FB556EF898C53CF96
Key Value
FileSize28208
MD5248B5785B63E6493A993E9E49C414F78
PackageDescriptionKinematics Dynamics and Optimization Library - ODE Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the collision ode headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b2
SHA-14B44F116482164D8C34E809A9A3E890CD93B8542
SHA-2569425BF0A66FB6A9B2E467AF4F2A939B20F757E8F075027EDEA918AA7584B1F90