Result for 40EE72F9FA7AE11F61CF2C74984CE55AF01D05B2

Query result

Key Value
FileName./usr/include/dart/gui/osg/InteractiveFrame.hpp
FileSize5452
MD59B994A2283EF9BE727349F384A14B1ED
SHA-140EE72F9FA7AE11F61CF2C74984CE55AF01D05B2
SHA-256FB2D1ADFBE6B6CC6B013099EBF8D375A895F434DC3341996742CFDF98157FEEE
SSDEEP96:C6rYJd0rYJTLx13A53PN6BKMyyuVAKJ2kqfouHQCfss7GH5iLukrjRbcFiktFi/Z:C6rsqrs373G31IKMyyMAKQbguHQCfssJ
TLSHT130B1760673DA77747C5740E1474EB091C901A0AFBA4AEAC438FF821C9F8F45A89A6F53
hashlookup:parent-total31
hashlookup:trust100

Network graph view

Parents (Total: 31)

The searched file hash is included in 31 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize45092
MD5C20054CB1A15F99004957953F8C2AFD1
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-1000087DD817EF998B5B5FEA447B61C3624B79BE1
SHA-2564D74B21B19871719CF6B6E52C1DC66FA3C0A927BF98165CA985EC5C897F590AC
Key Value
FileSize45088
MD513D8628F4820C9ED77A1154C6980FAE0
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-10435F19CCE64A83D20B0C5B234D2E5A7D8B20175
SHA-2562C31468C3F8622C7D530815B10668FD4755D6124EC5581E6A29FB18E419E2E31
Key Value
FileSize45196
MD589415EA2A4520A7E5569175C5186ED1E
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b1
SHA-116ABE24240614E25818D5D9865C0E3241F6B9510
SHA-2562197B8D7E730BFC743033ED2022CD8C8BB64166C247C7ADD8E6F52E555093B8A
Key Value
FileSize45112
MD53C54E67C88575B8BEE18761D3139699A
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-11A7B3A63941ABC0770C78B44E0E964C7F861BA1B
SHA-2569FBDFD2C9EBF433563239D336D8C6C0FEF27F53A1C30F8A6909682CE15C6DFC3
Key Value
FileSize45084
MD5C96C80CFD05F133DB3E196429A6D696A
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-10
SHA-12DF49F0B18BE52E4A6001AE6F9CC3D9316CD08A4
SHA-256E7AAC632DE295A779DE92E583D374E46A79A3AF82EECE12F5AE481C340475FA8
Key Value
FileSize45204
MD5A4DC883B5AFAE6A5003486E65E6BA2F2
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b1
SHA-138063CDDBE395AC1ED61A1AF5FF2703AFB55DFA0
SHA-256805F1EDDA4F07816592D361F5DFC4BE16445DB9F3E1F2F4B71D9D9F1C50E6756
Key Value
FileSize45128
MD5E16EE2DA32CCD0BE585AF6E158517D51
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-138E51DA83671F7225D5311B41DBDDEBE2F8C9EF9
SHA-2561FAF138C5380A0B2F8D27BD9B7742600DE5EC413BDE130A90D9753B901A6A5E0
Key Value
FileSize45100
MD5BC0E3EDACBD2E45DF10D46CC36D31519
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-1397BAF6C021ED80AF7247BC1CF4FB0A6904CAA15
SHA-2564B1B54B7D8B4BB62FB92CE96573C5CF6BDD695D85E1572B8196351B7DC66303C
Key Value
FileSize45096
MD5C3E6F719083DE289F6DFDE91D979AB9C
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-13A94F8AF9CBE84E95C5E4A93C0507D6A45D28A79
SHA-256161F266321DC7D8E92298E22411A66F0ABC440248977D8651A37446EB3902D88
Key Value
FileSize45172
MD5081AE10B77D8A476F3ADDA16F3E7EEB4
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b1
SHA-13B806188AEF140B4DE724E479D9583E57812B3E5
SHA-25663560C71F6AD1CC563C0BEA8AF298A76CFFE8CF6CE0CDA6A5E211E955EE320B4