Result for 2A3AB7B24D3A6F1FD263769CD841DAE34F416F89

Query result

Key Value
FileName./usr/share/doc/libdart-gui6.12/changelog.Debian.gz
FileSize2214
MD585BCDF334E44B25CC149B50C0C40B181
SHA-12A3AB7B24D3A6F1FD263769CD841DAE34F416F89
SHA-256FB8AE158350AAEEC1EEDEE3ACDE1EAB7C60D37108091DF0E38E4A6B090C928C4
SSDEEP48:XsIjNEW45jrA430THhhk+hunx3FzZdD5vbyRK6fS8lMXKKuoi:8IJ45jrA4ETHYL/tV6aZXKKuoi
TLSHT1C4413C1C487CB605BC4E6216464E2C92F95071CC028F5235A6EB35D023349DFECCD3D9
hashlookup:parent-total10
hashlookup:trust100

Network graph view

Parents (Total: 10)

The searched file hash is included in 10 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize88212
MD5E68AE254A2C26178D9538D427349CA75
PackageDescriptionKinematics Dynamics and Optimization Library - gui library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the GUI library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b1
SHA-188C559DD1A4398DA70F7BEC153F4E99AC2FC02AA
SHA-256666F735ABB5F179479A7AFD700BB8050A17A9DF431C37F2FB7B8AC3C444B8087
Key Value
FileSize107400
MD5B67178839B574D8DC1BB475F69D41B83
PackageDescriptionKinematics Dynamics and Optimization Library - gui library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the GUI library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b1
SHA-14CFE5B45EC5E7CDE2C4BCBA3D5071D9F7B9CCD8C
SHA-25659D0B4B783B3890FB3B56106A656D576E310E3A56476BE5740FE5C055E0B9EBC
Key Value
FileSize98648
MD503E927BA4DF0C75FBB04A6F190FC4D82
PackageDescriptionKinematics Dynamics and Optimization Library - gui library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the GUI library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b1
SHA-1874B05D8BA4B102410DF3CC4815CE30869B71EFB
SHA-2565E507EC89D6E5BBD2B8B4192490489BBE2AC8B5312CB03AD825CB5F03F6ECB68
Key Value
FileSize103548
MD5F42E0AB40CA296F255E8294FF96F5802
PackageDescriptionKinematics Dynamics and Optimization Library - gui library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the GUI library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-123CEA4D00E8E450E82E00D3FBEBFB18381B4ACF5
SHA-256869B18ABA9F877DC88242D3A233D5A28AD7BC1040E819DEC2F6DB98244295936
Key Value
FileSize91684
MD5D46F34AC111F4179D34C63B482D03622
PackageDescriptionKinematics Dynamics and Optimization Library - gui library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the GUI library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b1
SHA-19840560B08223BBC800F9BD1B52047FF463979AF
SHA-2565481C4E1372A6282DD29A98FB2EBA98E05BA59CEB3B816B765ACF2D39C4D7B11
Key Value
FileSize88196
MD5AC476530D4A791FCAEF5ED3F9D26C0A5
PackageDescriptionKinematics Dynamics and Optimization Library - gui library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the GUI library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-1D929FB418FB5B4F7DEFAEAD3DE4052AB00949888
SHA-2564B9F0C9AE0B4987D8C3BE2C5C07B7CDEA0718233476C3AA04328CCCC1F2F2AAE
Key Value
FileSize98644
MD5E85F8D06BE2EB6E6F903196C67123A73
PackageDescriptionKinematics Dynamics and Optimization Library - gui library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the GUI library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-1CD5D909A1336BCDE5013ADFA8DB7EC2B2C82B9BF
SHA-25609DEE42CA63183836A205F025B7546E9E0170BF2EF32B66E688A16AF20B6B86A
Key Value
FileSize103540
MD56C73C09FF297D6763169799D9A897A36
PackageDescriptionKinematics Dynamics and Optimization Library - gui library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the GUI library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b1
SHA-18DA432CB9123C2644FB68103BDEF3D0D04282B53
SHA-2563047E828C76263A4809F8195A3A18DF28DD568CB7607D4CB3C21764ADB7B36FC
Key Value
FileSize91496
MD5E01C16102D48AAD15F948E5941AD4003
PackageDescriptionKinematics Dynamics and Optimization Library - gui library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the GUI library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-136923A3BDD0BC219D334C407001FB1655BA1795A
SHA-2566D9DE187AD9292D3C4A4C7E83F876FC11765FFCD11B61404FD6F773BA2847208
Key Value
FileSize107248
MD5833D18714264315EE7BF669E95F6DB9B
PackageDescriptionKinematics Dynamics and Optimization Library - gui library DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains the GUI library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-12+b2
SHA-1E54B39DDAA32CED1C6892E3BD8775AF48F15083D
SHA-2566AD673A2258429CF46835485D1425C73EE211165E8517F3CA8F03E998D447EDA