Result for 22BBC5ECCACDA9694EACB937B8E81219B0C1DCB0

Query result

Key Value
FileName./usr/share/dart/cmake/dart_optimizer-nloptTargets-none.cmake
FileSize946
MD5778D954E50ADAB8B7C1ED3717F5187D0
SHA-122BBC5ECCACDA9694EACB937B8E81219B0C1DCB0
SHA-256EEA787C45E56153A66455C5C9C7801FE6808269235DEFB96CF47E386122FF814
SSDEEP24:x3m7hK0qUMYAAJaZJbiIWJY90JPrAJSMNSJyAJU0JJjUu:F4gUMR9ufYKUu
TLSHT1B411ABB60ED54A6702A3EF915CA39114C33081B3875A2D36456D1BA962B0F64270F4DB
hashlookup:parent-total4
hashlookup:trust70

Network graph view

Parents (Total: 4)

The searched file hash is included in 4 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize28000
MD51613B84AE1AE4FE14244CA1202E3900B
PackageDescriptionKinematics Dynamics and Optimization Library - nlopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains NLOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-nlopt-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-131B63A1C57384D311F64B60C6BA353A14DB2FFD9
SHA-256F204A3CBC70989F55CE461580311FD7807001CCE8A195BA15F86D739BD4BAB49
Key Value
FileSize28084
MD5649FAD2D01FFCC1EA78CE649F981E29A
PackageDescriptionKinematics Dynamics and Optimization Library - nlopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains NLOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-nlopt-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b1
SHA-1FF7F2BF583EB917C40B4F49DEDA58D1F898101E8
SHA-2564ADFD89F1B173AC222D9F72D3751ED7E4B62F27B583AC5144C9944F2043EA04E
Key Value
FileSize28084
MD5CF5AA7CFCFC3874B310D06AA3F930CD5
PackageDescriptionKinematics Dynamics and Optimization Library - nlopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains NLOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-nlopt-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b2
SHA-1BB5BD4CC8D4E2BF0ABE6C71A198BF71A005ABBA6
SHA-2564F4305B38DBFD9A111E226596728EDF04FDA8BB043F13CF331763A31BA1CD0F3
Key Value
FileSize27992
MD522624CFF0D6DB36CEFA139D9421F40B9
PackageDescriptionKinematics Dynamics and Optimization Library - nlopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains NLOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-nlopt-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-199992B266FD58916734D6A74C375AC8EBD2C74A4
SHA-25633691B0039D02C1340C3A5AA3AD5114C566B0D1D58A401EE7632A0810CA5B0B0