Result for 225F3A11A4319142849DE9597C950D5BFB4C6A10

Query result

Key Value
FileName./usr/share/dart/cmake/dart_utilsTargets-relwithdebinfo.cmake
FileSize901
MD5E3B5AA753F880C828875F3B944857EFE
SHA-1225F3A11A4319142849DE9597C950D5BFB4C6A10
SHA-2560000ADAB6362007054C82FA40A8428183AB84995B3B83AC68F55C34070DA510F
SSDEEP12:x3mcq86bVlvlY0B2pnJRWDUVYARVBfnjDyInkypW7gkd7+uJPHQypW7CUL2mJRW6:x3m7dS0qUMYARfCIn1pkhthujUu
TLSHT1F611F1720FC70EB38387DC9136881214C895C3BB974E397E4D461A6D03D05AA450E40E
hashlookup:parent-total5
hashlookup:trust75

Network graph view

Parents (Total: 5)

The searched file hash is included in 5 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize29564
MD5A6431CC67F95D544020C892C532E68D0
PackageDescriptionKinematics Dynamics and Optimization Library - utils dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b1
SHA-156BF8C7385AC1C37D792450DFBA1AC52CFF8477C
SHA-2564181BCB42DA0CD4044822712AF8F2701DDDA108B167036CB5D1D67A747B820DC
Key Value
FileSize29284
MD5B7D0FFF5D5637BEE9ED601E1F546B29C
PackageDescriptionKinematics Dynamics and Optimization Library - utils dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-dev
PackageSectionlibdevel
PackageVersion6.9.5-4
SHA-1D8299986E77F64BB7F30AEBFB659493AAD0E3E74
SHA-2564337B34A6268CA0D9F9BBCDF9B92649298A326271EE3EDDB6C67529FDE827B0A
Key Value
FileSize29232
MD5BB3A5BE90687B397D65AD6D136F745B5
PackageDescriptionKinematics Dynamics and Optimization Library - utils dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-dev
PackageSectionlibdevel
PackageVersion6.9.5-3
SHA-17FB82DA8A235977BD99EF1E1B1A6BF7BDF8C99AE
SHA-2568B742A6C4B2E60A00EC540A81A8EE1B35B30B01AC1FFAE6EAC9C0FD18B068EA2
Key Value
FileSize29560
MD5F4BAC24F34D8629E71116145209A712A
PackageDescriptionKinematics Dynamics and Optimization Library - utils dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b2
SHA-104DA2128A1F7C19DFC97CD4446988CF98329E977
SHA-256712ABD912C40E006FFB3C18513D96EF25D18ECF8D60DD8023A24CD4F1B0949FE
Key Value
FileSize29508
MD5C60FC53F027E2B65C028A9279CD1778B
PackageDescriptionKinematics Dynamics and Optimization Library - utils dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-dev
PackageSectionlibdevel
PackageVersion6.9.5-3+b1
SHA-1A42340C5EA241ED3E12720B637EF55B1CD75313B
SHA-2564BA8664A799C2D3F47C1F4501CF50EADE60A9BA29DE524793F3A4C5832843210