Result for 19BD343F7C07B114272DC7398FBAB6B48CFE603C

Query result

Key Value
FileName./usr/share/dart/cmake/dart_external-odelcpsolverTargets-none.cmake
FileSize996
MD516FEB9C8459511E37D23BB69D3A2F66A
SHA-119BD343F7C07B114272DC7398FBAB6B48CFE603C
SHA-2568868E3DCCD4A61E50F3DB6444D2C4047D615E37B30FDE55A39A059B5BED70062
SSDEEP24:x3m7hK0qUMYA/QU9iIl7y97lr/YMN58/U7XjUu:F4gUMly9VQkvUu
TLSHT1AB118C334EC55A7F0B83FE6194909114C33092F3AB5FAC25C7891F16A6B3E98050F88D
hashlookup:parent-total4
hashlookup:trust70

Network graph view

Parents (Total: 4)

The searched file hash is included in 4 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize34392
MD5F5B4683F5CAFF068F91860602863B6EE
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains odelcpsolver headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-19445D291F5E94BFB2E4669EE3FA88CBFBB146CDF
SHA-2565DA97AB46C2934129D4E859C1BFB9820E8EF1178852D3C3F775F9AA736A0C372
Key Value
FileSize34396
MD5B34C2A00396D1D2021FE62781469D6A5
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains odelcpsolver headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-11FE943EB363A9B678B32A586BCCF906453689D5D
SHA-2568323F8E4DC590B55102AFD1D81A550DBF514C5DA1BE384A31277CC10E699CE6E
Key Value
FileSize34476
MD5A3BAD086CA465FCC578D91D36E669D1A
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains odelcpsolver headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b2
SHA-1321BA9E1E5BA4FF0275666FAEC4E797A8A908366
SHA-2562D7C83C767AAF3D4CFBEA7CA97055C6A4FB1B8DCB59EF210D0E1311232F4E658
Key Value
FileSize34468
MD5319646EC50A3B039DBAF23BCC8D8AB69
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains odelcpsolver headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b1
SHA-15F0ABE360C272B0EE4C984DF30BBEB37C0878B40
SHA-256DE382C39935A7639E946176AF4FCC49867DCAA6F4B233D11D84CE66C8EE072FF