Result for FB48C94A6433163638580DCE1F1A4298C8D0C05F

Query result

Key Value
FileName./usr/share/doc/libdart-optimizer-ipopt6.12/changelog.Debian.gz
FileSize2117
MD580874BE41E7D6F913123439A4ECF4443
SHA-1FB48C94A6433163638580DCE1F1A4298C8D0C05F
SHA-2568BAB7DB2D37F4C3B4DD0C50A6136C394D582F8E51BC789FCDAD6F7DFC7461801
SSDEEP48:Xeaz2KY6yVqJ3F3H6bWn47DtY9nfkqrOA1f8L+wKU:XY6yVq1aynWS9fVvpe+A
TLSHT1C9414C721D3D4602D51B6A4717E4C9B8E5C455FE4D308123462EF7E380E39C91077BA8
hashlookup:parent-total11
hashlookup:trust100

Network graph view

Parents (Total: 11)

The searched file hash is included in 11 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize36832
MD5068D403EDEAA2ABB96477396B2EFB954
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the ipopt optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-ipopt6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b3
SHA-12A38BE21D2EFECA5781CB13D97597477E176AB66
SHA-2562C86BCAD97911CA3F8573046021433A0DF89BE85B776E6107F66C0029F3AB8B7
Key Value
FileSize38196
MD5E1AC25E34B6A2BA61449BED2E05CF062
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the ipopt optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-ipopt6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b1
SHA-1E01857CBA336E72A1E2EADAAA93ACDCE49979547
SHA-256A3BF5D4B7C4C9864B86B3BD5B7FDC1BD42F0E5990F186FB4E0DDF17C7FBA503B
Key Value
FileSize37240
MD5F4159DF891E595A56F733355F9596854
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the ipopt optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-ipopt6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b1
SHA-1FCEE51C6870D770F8F2F97016E619A99D7B36734
SHA-256F260E7C87B2E8C4119374B50FAE6279A98C5E1F87DA6C5EEE77310ED1BC32A5B
Key Value
FileSize37240
MD5D63A13E580851E9EE01156A4AA52EBF6
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the ipopt optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-ipopt6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b2
SHA-1422A79E2CCE98DF4DE2B5AC63590B91642E4F8DE
SHA-256F42DE3F6F3D28FB4422E35F0A096B53AAE87AF33AFBC77CE37380DD9CBDD43D2
Key Value
FileSize37372
MD5FAFE332445305432CF5ACD5EF056F99C
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the ipopt optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-ipopt6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b1
SHA-13769BED88B2E5DB2F25FFCC5CCC6C99177FE92A7
SHA-2564261D754F9ECF5F246803EEB7440AB4C26915C64B7A731CAAFAA39CF78CF6FFB
Key Value
FileSize37416
MD599179985E5165FE73C31085A7D930236
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the ipopt optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-ipopt6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b3
SHA-17AA5A0E1BAAECF56A260B3129B50E5BDA4450734
SHA-2564F764036BB4860665835A51F60D92EF85F24F681C01BC101D6C8103CB8FECE83
Key Value
FileSize39204
MD5DCC08ACBBF2EA02658D1A62346457610
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the ipopt optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-ipopt6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b3
SHA-1911283CA2F2BD9CC090B6686E9FF816F9DEA71F6
SHA-256A3F4FE6F80ED7E5C9EBFA5D969EE5E57EEDB1703989C96428D409042040222CF
Key Value
FileSize38208
MD58E0242DAC955539ECE236056B26F3A56
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the ipopt optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-ipopt6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b3
SHA-16F60305167A4BEA254DAB8481A3193C9AC73F89B
SHA-256C8729D47C21E7C2F978F4965C977B9A5B0D1A33370D78DA9845CFD92EF15E93A
Key Value
FileSize39192
MD546EA7E9F385AFFDB28478A759AC7E0A1
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the ipopt optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-ipopt6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b1
SHA-1FD82281948717C7315A7DE84E4075C7208DB7628
SHA-2562284C922E250918E98AC109248D63AC44C8485A1096850572748AFAA224979F0
Key Value
FileSize36772
MD5304737F6056B31655179B9FE84BCC090
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the ipopt optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-ipopt6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b1
SHA-1EC4B9275B67DF72624595644450F50731A04EC84
SHA-2568E4A7BD19ABB54400A695A0FA3DAFE8F148D3590EFFB9EB37FABEFA78C483461
Key Value
FileSize37256
MD555BF9127107BB873E44DB790729A895C
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the ipopt optimizer library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-ipopt6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b3
SHA-1119ABE5EF310078C2060D06CC6F368413C96F69C
SHA-256E4DBBE98CD433D69D2CEFCD32DAA528E81D9FFBAC338AE37DD026CCAC714A5FC