Result for FADF2C294EDD6D3D16374617A9DA1CD8A4DBA9F4

Query result

Key Value
MD50B5B19D9ADFC87C2B935B888AECEA5A7
PackageArchs390x
PackageDescriptionScikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts.
PackageMaintainerFedora Project
PackageNamepython-scikit-learn
PackageRelease3.fc20
PackageVersion0.14.1
SHA-1FADF2C294EDD6D3D16374617A9DA1CD8A4DBA9F4
SHA-256E15C9C9E57B5AA8607BE3DA4C6AA16C5F61E8CA7B5B1C3F78AB81819AEB039A5
hashlookup:children-total801
hashlookup:trust50

Network graph view

Children (Total: 801)

The searched file hash includes 801 children files known and seen by metalookup. A sample is included below:

Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/qda.pyo
FileSize8441
MD5A29B9034F3A68424B866B6B5709BCF81
SHA-100050BECB8ECA0F94D389DD05505D7E9F6F9E325
SHA-25600D847D62669C8A3F813B55960FCB66FF7FBA1532E58B2414DAB886226343881
SSDEEP192:laLv1RYuHWj7yk9yLRfi08R/9CcqKx9ze9I9X7Q5p9U7lxI9G4fO69iifc949EDa:qrYqWLAFfV8xATKxJei1WO78kX6oauDa
TLSHT1C002A645BFA10A6FD9A39176A0F84107DEB4D4B79280631134FFA5362F98279C23F789
Key Value
FileName./usr/share/doc/python-sklearn-doc/examples/linear_model/plot_ols_ridge_variance.py
FileSize2032
MD544A08C8EAB78FA8522617D143280CE43
SHA-1002D35237E1045669AE711D219C5C7E2C828DF64
SHA-256DF23A76B9DA4857633A934C3CDEAC1FB3F1C3C0BFA5266F2CF148F22CC3F7240
SSDEEP48:4YOa+3VOPSAN5mAOxGwq0JcrsyPAhpa2b7TyJANfeK6AK/l:4YOTlvsmAOxGwvJdyP7ifmWeK6Ail
TLSHT15841861B62861B73A337942DBDB9329C7351409F79427CA57BFC61085F8172C0EB94B5
Key Value
FileName./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py
FileSize2407
MD56CCA3A2DFA57FF6AF3CF3A27AE22F209
SHA-101070C25205C477A297A7CCE48DA78871F64DD2C
SHA-256298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8
SSDEEP48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq
TLSHT1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD
Key Value
FileName./usr/share/doc/python-sklearn-doc/examples/exercises/plot_iris_exercise.py
FileSize1577
MD53CEE1240FBA2960897069B76B5637772
SHA-10116272B06B5037C5FC6E48E289CAD5FC1E6CC61
SHA-256BE809F9603D572D38F9B2B5C30FDDBC3865711F28480FD46C2EDFED3DB78BC83
SSDEEP24:/AX9SV6wq4Vxknvg059WbkKX52BrpH2sCU5tkLtmGvItyG4bxpZNbH/D:IXcVVVqrKX5m8lMtggGPbxfNz/D
TLSHT1F031201A904E337213C790BD82EB29846B5366234B44687A777DB7D1DF02764F239942
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/tests/test_qda.pyc
FileSize2932
MD53934CB4F3F1DB5A644ED1EACDFD6532D
SHA-1011B80C58529B903BEAEF6ABAE138A3DF1513A43
SHA-2568104B5F327252E2D879932FCC32F0F24958EF3E33995AF02A70FC8746C38A6EE
SSDEEP48:MrXSsBrUHCHeGaeM/udRdfK0sWHyMvgXXYaQ+52PHsWJ2s2XbWV214RdCibYJ20w:+5xHeOndRdIWPvgXXbQnPHYs2XnyRdn3
TLSHT15551DE53A3EA8D1BC0A11138F4B9530BECB1F4BA6E85A7946AFED03939D8344D51B385
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/manifold/spectral_embedding_.pyo
FileSize15977
MD5C7A0E6A0BD0BEA4B4C15E9AB97D5FBCE
SHA-1025A975C0C9E72A0C75A0C50E84289B679110F0F
SHA-256B6E6523E9237EF3696D2A0AC8DE49B7717FB4408F72C6C52705C15BBD9B5C500
SSDEEP384:Fnhogg6t4gD1PoKGtZRy6KWV+nPH8snOH+j1dV9d888b:btg6t469QZs6d8nPH8snc+jk
TLSHT13672C5247F4683AFC1A1A0B2A4F4158BCF79E4B7C883639135DED1791FD2664E22E385
Key Value
FileName./usr/share/doc/python-sklearn-doc/examples/plot_rfe_digits.py
FileSize852
MD59103650C2F36397AB88DF835B34D38B5
SHA-102C0A867F5D8E9C34607BCE93EF5ABF7C6F495A9
SHA-2569F282DADA6645094618C0A5BFA1913CC17F1384A2BBEC0B7B7783AB89CBE9928
SSDEEP12:ilgJr4Y/8OREMeyAMyfbyvmvA9NZfXALqSkAVL/KO5Oe4N6sYD:iqh4E8HyLyTyOEfXALCAVIGh
TLSHT141011E5D5220B7771DB758B582F5809319F20D3A2341622015A8CA658B82BB6FFF7A43
Key Value
FileName./usr/share/doc/python-sklearn-doc/examples/plot_kernel_approximation.py
FileSize7974
MD592E29404D8F074E46F35C40F20766AB8
SHA-102FB35C9AF06F6F6872DFFCAAC0A51570D42B6A2
SHA-256BF5D973C48EC576C568FF9ECFB74EA75395EBF29B4D1C19AB82D210B6A4DDCF4
SSDEEP96:0X75FrUiJKIiRjQBdLdgooMgFYZygEqTgR/KYIOcITTmpsm51iuPztYi:+75FQiti6KYZkR/KYIOcITq1iuhYi
TLSHT17CF1E80B20E30B3223B7207C23DC21C7BFA49056E9975A3DF99D8654379AF21E276649
Key Value
FileName./usr/share/doc/python3-scikit-learn/examples/ensemble/plot_adaboost_multiclass.py
FileSize3585
MD534017803563CB9F9B635C002523C75AB
SHA-10322042E7BF79C438AD29D097C0E77A689587F33
SHA-25650E1E9107975866013E5FFB4FA9033867E9BB126CC32959A3E9CC4E3E4204164
SSDEEP96:ir9H8frWUXgINfBhroMYbPXwW/K/oKR6m257TwDLj5dlTn2093:DC3iXR6mp1N
TLSHT1F07193258A666A3187B96CFECCAC526D3360144C9D22D009B5FD8F300F0BF19ECBA2D4
Key Value
FileName./usr/share/pyshared/sklearn/cluster/spectral.py
FileSize19089
MD57F39F2175913371EB02C1FC7AD23163A
SHA-103C4601BEAD359C5B92ED2D0FA173AB399D8C9FE
SHA-256E4FAABA262F99730C34B8078D83DACC8BF18776F391D8A9657004B8524E70BE8
SSDEEP384:M+X/Q0+fEqCC56so+IRrREezf61red3/YV7i/aD6VHnNW5ajWlFYV7wJC1S/a703:M+X/Q0kEqCC56soTPloret/WW/aD6741
TLSHT17582D739394262379C87E09289FE20A68364058F8F537455B99DC6281F13E7873BEFD5