Result for FAA0661D302ED2AF604EC96AF361AF9EFCF81A63

Query result

Key Value
FileName./usr/share/licenses/libcolamd2/License.txt
FileSize1792
MD539D0916234D9DB030CF028615F7429E1
RDS:package_id263813
SHA-1FAA0661D302ED2AF604EC96AF361AF9EFCF81A63
SHA-25634F1B285936D0DE77AC491E808C3F7915C00AF5D4E8C36E26B1AD3532E00A0D9
SSDEEP48:q0+S9OYrYJqrYJoMKvPgKe432sniL32s3Ctc13oY8Tdv:BxwYrYJqrYJQQKV3M3zxkTt
TLSHT10F31748B1E404BE219E2D7A4366BDAC4F159C03F3A236905386DB3545F6B62E98BF490
insert-timestamp1654960711.1911817
sourcemodern.db
hashlookup:parent-total52
hashlookup:trust100

Network graph view

Parents (Total: 52)

The searched file hash is included in 52 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD57E6877CD710DED8A42D245E815E18309
PackageArchx86_64
PackageDescriptionThe COLAMD column approximate minimum degree ordering algorithm computes a permutation vector P such that the LU factorization of A (:,P) tends to be sparser than that of A. The Cholesky factorization of (A (:,P))'*(A (:,P)) will also tend to be sparser than that of A'*A. SYMAMD is a symmetric minimum degree ordering method based on COLAMD, available as a MATLAB-callable function. It constructs a matrix M such that M'*M has the same pattern as A, and then uses COLAMD to compute a column ordering of M. Colamd and symamd tend to be faster and generate better orderings than their MATLAB counterparts, colmmd and symmmd. COLAMD is part of the SuiteSparse sparse matrix suite.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamelibcolamd2
PackageReleaselp152.5.10
PackageVersion2.9.6
SHA-10437EF0F1194F525779DFC80971DE0E4B5CA4F07
SHA-256AC679E1EA2E1DE30D1598C1BCFCC9913330D1E8888BFD16ADC222040BE57C487
Key Value
MD52C43326C617C2ACE56455E20EB5F5509
PackageArchx86_64
PackageDescriptionsuitesparse is a collection of libraries for computations involving sparse matrices. The package includes the following libraries: AMD approximate minimum degree ordering BTF permutation to block triangular form (beta) CAMD constrained approximate minimum degree ordering COLAMD column approximate minimum degree ordering CCOLAMD constrained column approximate minimum degree ordering CHOLMOD sparse Cholesky factorization CSparse a concise sparse matrix package CXSparse CSparse extended: complex matrix, int and long int support KLU sparse LU factorization, primarily for circuit simulation LDL a simple LDL factorization SQPR a multithread, multifrontal, rank-revealing sparse QR factorization method UMFPACK sparse LU factorization SuiteSparse_config configuration file for all the above packages. RBio read/write files in Rutherford/Boeing format
PackageMaintainerFedora Project
PackageNamesuitesparse
PackageRelease5.fc33
PackageVersion5.4.0
SHA-106D371D6EBB8E577DD4BF23D49DE048B3807B1F7
SHA-256EA3F7D8D0D6264775E29DF28CB2474D0B5F9F1549251740B6462744D15473AC0
Key Value
MD5DEA6BA35AB03D3DA921C1A6847E72862
PackageArchaarch64
PackageDescriptionsuitesparse is a collection of libraries for computations involving sparse matrices. The package includes the following libraries: AMD approximate minimum degree ordering BTF permutation to block triangular form (beta) CAMD constrained approximate minimum degree ordering COLAMD column approximate minimum degree ordering CCOLAMD constrained column approximate minimum degree ordering CHOLMOD sparse Cholesky factorization CSparse a concise sparse matrix package CXSparse CSparse extended: complex matrix, int and long int support KLU sparse LU factorization, primarily for circuit simulation LDL a simple LDL factorization SQPR a multithread, multifrontal, rank-revealing sparse QR factorization method UMFPACK sparse LU factorization SuiteSparse_config configuration file for all the above packages. RBio read/write files in Rutherford/Boeing format
PackageMaintainerFedora Project
PackageNamesuitesparse
PackageRelease5.fc33
PackageVersion5.4.0
SHA-10A8E05A260AF4977FCA7890A0B89A710E8427180
SHA-256A2BC8D58F7E8D56EFCFC3D10F126B5FDAA2E0FB167FE23D96A88F6A896C4B2C0
Key Value
MD514E83CECAADA5D85B02174822FB1CAA1
PackageArchi686
PackageDescriptionsuitesparse is a collection of libraries for computations involving sparse matrices. The package includes the following libraries: AMD approximate minimum degree ordering BTF permutation to block triangular form (beta) CAMD constrained approximate minimum degree ordering COLAMD column approximate minimum degree ordering CCOLAMD constrained column approximate minimum degree ordering CHOLMOD sparse Cholesky factorization CSparse a concise sparse matrix package CXSparse CSparse extended: complex matrix, int and long int support KLU sparse LU factorization, primarily for circuit simulation LDL a simple LDL factorization SQPR a multithread, multifrontal, rank-revealing sparse QR factorization method UMFPACK sparse LU factorization SuiteSparse_config configuration file for all the above packages. RBio read/write files in Rutherford/Boeing format
PackageMaintainerFedora Project
PackageNamesuitesparse
PackageRelease6.fc34
PackageVersion5.4.0
SHA-10EED438F5CEE0BD7061DD38ABEF57E7BD3A39438
SHA-2568FEF5182E19843B5989DC01637CC4839678C8B7FF67E7A05F353AA4E21B54689
Key Value
MD5F6A2D7D1EFA0D57B2F45CCC192CF34B5
PackageArchx86_64
PackageDescriptionThe COLAMD column approximate minimum degree ordering algorithm computes a permutation vector P such that the LU factorization of A (:,P) tends to be sparser than that of A. The Cholesky factorization of (A (:,P))'*(A (:,P)) will also tend to be sparser than that of A'*A. SYMAMD is a symmetric minimum degree ordering method based on COLAMD, available as a MATLAB-callable function. It constructs a matrix M such that M'*M has the same pattern as A, and then uses COLAMD to compute a column ordering of M. Colamd and symamd tend to be faster and generate better orderings than their MATLAB counterparts, colmmd and symmmd. COLAMD is part of the SuiteSparse sparse matrix suite.
PackageNamelibcolamd2
PackageReleaselp150.59.1
PackageVersion2.9.6
SHA-11558E80A498BF522DB7CB737431CBB59F945FF8B
SHA-256190371BFB18C7EA5E521BD181B68DEF45DF37D077DDDBF740F1C1E79DC0F000D
Key Value
MD5E4DDCD415A3C96499E8934C063CC1FDF
PackageArchx86_64
PackageDescriptionThe COLAMD column approximate minimum degree ordering algorithm computes a permutation vector P such that the LU factorization of A (:,P) tends to be sparser than that of A. The Cholesky factorization of (A (:,P))'*(A (:,P)) will also tend to be sparser than that of A'*A. SYMAMD is a symmetric minimum degree ordering method based on COLAMD, available as a MATLAB-callable function. It constructs a matrix M such that M'*M has the same pattern as A, and then uses COLAMD to compute a column ordering of M. Colamd and symamd tend to be faster and generate better orderings than their MATLAB counterparts, colmmd and symmmd. COLAMD is part of the SuiteSparse sparse matrix suite.
PackageNamelibcolamd2
PackageRelease59.1
PackageVersion2.9.6
SHA-124EAE3387EF2D1274E9E9DD33E84C0037DDBC514
SHA-256A2ECB052B704CD52A313116A4B439BEB50964A2FC6A3F3B533FB0704B1B357F3
Key Value
MD5B9F56469CEA5D762B3A9C2424051C04E
PackageArchi686
PackageDescriptionsuitesparse is a collection of libraries for computations involving sparse matrices. The package includes the following libraries: AMD approximate minimum degree ordering BTF permutation to block triangular form (beta) CAMD constrained approximate minimum degree ordering COLAMD column approximate minimum degree ordering CCOLAMD constrained column approximate minimum degree ordering CHOLMOD sparse Cholesky factorization CSparse a concise sparse matrix package CXSparse CSparse extended: complex matrix, int and long int support KLU sparse LU factorization, primarily for circuit simulation LDL a simple LDL factorization SQPR a multithread, multifrontal, rank-revealing sparse QR factorization method UMFPACK sparse LU factorization SuiteSparse_config configuration file for all the above packages. RBio read/write files in Rutherford/Boeing format
PackageMaintainerFedora Project
PackageNamesuitesparse
PackageRelease3.fc32
PackageVersion5.4.0
SHA-12625D2027D52772DE416A4F6EB3B0DB5BB0BC6D4
SHA-25607CFE01177ED481017D3BA9534F9F96C62BC3B8D7A33FBC62BE306F1CFEE43FC
Key Value
MD5FCEFBE6E63F65EF7C6A971D01FA7782F
PackageArchaarch64
PackageDescriptionsuitesparse is a collection of libraries for computations involving sparse matrices. The package includes the following libraries: AMD approximate minimum degree ordering BTF permutation to block triangular form (beta) CAMD constrained approximate minimum degree ordering COLAMD column approximate minimum degree ordering CCOLAMD constrained column approximate minimum degree ordering CHOLMOD sparse Cholesky factorization CSparse a concise sparse matrix package CXSparse CSparse extended: complex matrix, int and long int support KLU sparse LU factorization, primarily for circuit simulation LDL a simple LDL factorization SQPR a multithread, multifrontal, rank-revealing sparse QR factorization method UMFPACK sparse LU factorization SuiteSparse_config configuration file for all the above packages. RBio read/write files in Rutherford/Boeing format
PackageMaintainerFedora Project
PackageNamesuitesparse
PackageRelease6.fc34
PackageVersion5.4.0
SHA-136FDE2B471E3335E4437B71BC9DD7F2BFDBB29D2
SHA-256627C265A77D6BCC6A4319ADAE49DD43690AD3DC97A9D4EC0588287AB91C90E48
Key Value
MD543AC4E77C512456420B8E31648DCC06C
PackageArcharmv7hl
PackageDescriptionsuitesparse is a collection of libraries for computations involving sparse matrices. The package includes the following libraries: AMD approximate minimum degree ordering BTF permutation to block triangular form (beta) CAMD constrained approximate minimum degree ordering COLAMD column approximate minimum degree ordering CCOLAMD constrained column approximate minimum degree ordering CHOLMOD sparse Cholesky factorization CSparse a concise sparse matrix package CXSparse CSparse extended: complex matrix, int and long int support KLU sparse LU factorization, primarily for circuit simulation LDL a simple LDL factorization SQPR a multithread, multifrontal, rank-revealing sparse QR factorization method UMFPACK sparse LU factorization SuiteSparse_config configuration file for all the above packages. RBio read/write files in Rutherford/Boeing format
PackageMaintainerFedora Project
PackageNamesuitesparse
PackageRelease3.fc32
PackageVersion5.4.0
SHA-1385DD89357C08870D1842E660C673156161A48CC
SHA-25682CD1C06E59F1D2D0DE626E6585F0C7AD7294484EB3F4C15A24852C55F03219E
Key Value
MD55D78CA30C8C10C5649F86F00A69172BE
PackageArchx86_64
PackageDescriptionThe COLAMD column approximate minimum degree ordering algorithm computes a permutation vector P such that the LU factorization of A (:,P) tends to be sparser than that of A. The Cholesky factorization of (A (:,P))'*(A (:,P)) will also tend to be sparser than that of A'*A. SYMAMD is a symmetric minimum degree ordering method based on COLAMD, available as a MATLAB-callable function. It constructs a matrix M such that M'*M has the same pattern as A, and then uses COLAMD to compute a column ordering of M. Colamd and symamd tend to be faster and generate better orderings than their MATLAB counterparts, colmmd and symmmd. COLAMD is part of the SuiteSparse sparse matrix suite.
PackageNamelibcolamd2
PackageReleasebp153.44.4
PackageVersion2.9.6
SHA-13FE885F4F8DCB129B47D83992B331ED7D82549A6
SHA-2562DA03D3F90EA495D50482B800E8D115B8C44236278382EFC7A4AAF7643E7D227