Key | Value |
---|---|
MD5 | B058CF21FF7DFBC1090BF9DE68B5141F |
PackageArch | ppc64 |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python3-scikit-learn |
PackageRelease | 3.fc20 |
PackageVersion | 0.14.1 |
SHA-1 | E9541EE53FBA0B038553927C6A7419A80E98B603 |
SHA-256 | 237BC029521C16263D804D4BA09E77C4F440DB2B5CE79159BE1753695F96DF61 |
hashlookup:children-total | 801 |
hashlookup:trust | 50 |
The searched file hash includes 801 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib64/python3.3/site-packages/sklearn/linear_model/tests/__pycache__/test_omp.cpython-33.pyo |
FileSize | 12514 |
MD5 | 955D686F7374105B3EE0617CA75C052A |
SHA-1 | 0011A6D3ACE6ED743EEFE19B79F339FF99DA8B11 |
SHA-256 | 260CC3A7E62250715E39A92D6823F7B1C5020CB33FB55EF9DC132FB762CC1589 |
SSDEEP | 192:fJXxTW91scSZ60nvcZDmPgJQou8qqpW2eb22q28j5Wuf+7uPMzLmMQzP2ni9897+:fJJRgJZUs21ocOquj7l9PJXyK88b |
TLSH | T160424190A7FF8DDBC17806397938530AEDD2FDE76A057B0001A5E1AC3BC8337194A689 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/linear_model/plot_ols_ridge_variance.py |
FileSize | 2032 |
MD5 | 44A08C8EAB78FA8522617D143280CE43 |
SHA-1 | 002D35237E1045669AE711D219C5C7E2C828DF64 |
SHA-256 | DF23A76B9DA4857633A934C3CDEAC1FB3F1C3C0BFA5266F2CF148F22CC3F7240 |
SSDEEP | 48:4YOa+3VOPSAN5mAOxGwq0JcrsyPAhpa2b7TyJANfeK6AK/l:4YOTlvsmAOxGwvJdyP7ifmWeK6Ail |
TLSH | T15841861B62861B73A337942DBDB9329C7351409F79427CA57BFC61085F8172C0EB94B5 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.3/site-packages/sklearn/ensemble/__pycache__/base.cpython-33.pyo |
FileSize | 3679 |
MD5 | 7049D2023DBDD34318114FA7834367E5 |
SHA-1 | 0048060EEBC2739C9676F079D9B2EE400484DE80 |
SHA-256 | A2DE459E77D96F34489C1B09BDFBDF3A00745C348203852B6E510BCE57854742 |
SSDEEP | 96:Kx5UlEIfcCB+kTh84TewpwC/XWB1+AJnihJnD86W8EhhpxJiLyYaclVwKrJZjlug:KvIfcCorGeh3Lw97xwgOef |
TLSH | T14E710046927CB3D7CDA43B708C2421908F52B9AF22182A82305CEB9F3F9A975177B745 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py |
FileSize | 2407 |
MD5 | 6CCA3A2DFA57FF6AF3CF3A27AE22F209 |
SHA-1 | 01070C25205C477A297A7CCE48DA78871F64DD2C |
SHA-256 | 298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8 |
SSDEEP | 48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq |
TLSH | T1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/exercises/plot_iris_exercise.py |
FileSize | 1577 |
MD5 | 3CEE1240FBA2960897069B76B5637772 |
SHA-1 | 0116272B06B5037C5FC6E48E289CAD5FC1E6CC61 |
SHA-256 | BE809F9603D572D38F9B2B5C30FDDBC3865711F28480FD46C2EDFED3DB78BC83 |
SSDEEP | 24:/AX9SV6wq4Vxknvg059WbkKX52BrpH2sCU5tkLtmGvItyG4bxpZNbH/D:IXcVVVqrKX5m8lMtggGPbxfNz/D |
TLSH | T1F031201A904E337213C790BD82EB29846B5366234B44687A777DB7D1DF02764F239942 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.3/site-packages/sklearn/neighbors/typedefs.cpython-33m.so |
FileSize | 70544 |
MD5 | 62CB4248F1D62C0B39D30FC94BB3E6BB |
SHA-1 | 01E1695AF1F874BECB84E658D55EEBF1D3FF7C64 |
SHA-256 | 42B373DC19EF7A9F2A4773F286D6C934FDE1ADE8A0150E0A859751DDA3D6A83D |
SSDEEP | 192:G8pDPpRIxEVOxo7BJ175vqmR0Ycaa+iOPdxdKrDJHdkqOEXd8oCrAZsiuc:PYq4oFJ1lVa/kPHdKrDROEXCMdu |
TLSH | T18863B7DBB740189BE66C2B7002592BF4F72C7D74C7615303BA0E16772AE3EA81949783 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/plot_rfe_digits.py |
FileSize | 852 |
MD5 | 9103650C2F36397AB88DF835B34D38B5 |
SHA-1 | 02C0A867F5D8E9C34607BCE93EF5ABF7C6F495A9 |
SHA-256 | 9F282DADA6645094618C0A5BFA1913CC17F1384A2BBEC0B7B7783AB89CBE9928 |
SSDEEP | 12:ilgJr4Y/8OREMeyAMyfbyvmvA9NZfXALqSkAVL/KO5Oe4N6sYD:iqh4E8HyLyTyOEfXALCAVIGh |
TLSH | T141011E5D5220B7771DB758B582F5809319F20D3A2341622015A8CA658B82BB6FFF7A43 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/plot_kernel_approximation.py |
FileSize | 7974 |
MD5 | 92E29404D8F074E46F35C40F20766AB8 |
SHA-1 | 02FB35C9AF06F6F6872DFFCAAC0A51570D42B6A2 |
SHA-256 | BF5D973C48EC576C568FF9ECFB74EA75395EBF29B4D1C19AB82D210B6A4DDCF4 |
SSDEEP | 96:0X75FrUiJKIiRjQBdLdgooMgFYZygEqTgR/KYIOcITTmpsm51iuPztYi:+75FQiti6KYZkR/KYIOcITq1iuhYi |
TLSH | T17CF1E80B20E30B3223B7207C23DC21C7BFA49056E9975A3DF99D8654379AF21E276649 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.3/site-packages/sklearn/__pycache__/grid_search.cpython-33.pyo |
FileSize | 37392 |
MD5 | 5B31BB2470AE42262020CD26D1EC44DD |
SHA-1 | 0312459AA5B70FFB05AE4CBD4324C227C746E84B |
SHA-256 | E2BB742F373BF2624567A5A14D2E662351F29B659DD4C29B57D308B8E5DFDD2E |
SSDEEP | 768:TgpPdYi68brb0OkPjv1+0UQhjvfU8GD+QcZENIkVaOkxk5NhFsx5N:adYi1brjIjv1yQKDcZEhaOkxk5BsfN |
TLSH | T1A7F295416B7E13E6C5BA07B064B80160DF22E4B77644264134ECF9692F8FE76A33B749 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python3-scikit-learn/examples/ensemble/plot_adaboost_multiclass.py |
FileSize | 3585 |
MD5 | 34017803563CB9F9B635C002523C75AB |
SHA-1 | 0322042E7BF79C438AD29D097C0E77A689587F33 |
SHA-256 | 50E1E9107975866013E5FFB4FA9033867E9BB126CC32959A3E9CC4E3E4204164 |
SSDEEP | 96:ir9H8frWUXgINfBhroMYbPXwW/K/oKR6m257TwDLj5dlTn2093:DC3iXR6mp1N |
TLSH | T1F07193258A666A3187B96CFECCAC526D3360144C9D22D009B5FD8F300F0BF19ECBA2D4 |