Key | Value |
---|---|
MD5 | 696C5D9A72AED7B4961D2FAD4DE3EE0F |
PackageArch | x86_64 |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python3-scikit-learn |
PackageRelease | 2.fc33 |
PackageVersion | 0.23.1 |
SHA-1 | E21018ED668BE7CE20E7709EAAD62C5809D4391B |
SHA-256 | 26FBA8D670F9F85130EC5884584D277A959B74FCD23704CC9E39AE4FB490B51F |
hashlookup:children-total | 1863 |
hashlookup:trust | 50 |
The searched file hash includes 1863 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/svm/plot_svm_margin.py |
FileSize | 2540 |
MD5 | 20F0800268AA3B127A61866BEB151FF0 |
SHA-1 | 001C2B7EF85E6BFACF735090F2C5E656263B182A |
SHA-256 | 800978E1EF0A17DAE6DEA3ECAB717245DEA9CDBA8F649D4E4A2877352DB3E680 |
SSDEEP | 48:CdEGkJVbTOXwNUh6EPXu6HSghmkhslNMftKVGbioWGF:CvQcX186HIkh6Sms |
TLSH | T140517401364C73B09B4381983DE7ADB57761A17F5D80282FB1AD6244CF18BAAD739D8A |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.9/site-packages/sklearn/linear_model/tests/__pycache__/test_least_angle.cpython-39.opt-1.pyc |
FileSize | 17430 |
MD5 | 9C131CF04A76441034F7DE5F6C939125 |
SHA-1 | 0037D74A6A2B9A87614C133E1B8648EAFAC02999 |
SHA-256 | CE32D3C81AB57385EAFA4EBA173956454EB80553007D26350596A7C629E22FDE |
SSDEEP | 384:iuVildWD/WW4BU3A57/NnTt0sHRoxJUQaUAw9cdsC:iuQODNwVFTt0sxo71Aw9cdz |
TLSH | T1AE722A997C87DE5DFC2AF1FC003D09108E54E374274BE7429920A24F1D655A63EBB1AE |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/applications/plot_species_distribution_modeling.py |
FileSize | 7970 |
MD5 | 46FB3C87E92A0D145492F244860459FD |
SHA-1 | 005689838EAB53866B9804164514E5CC80C8E08D |
SHA-256 | A34FA8826C4DE8FA6B695DC1AE85FA4F4EE0B4D12062B4CEF9EF213479E14DD9 |
SSDEEP | 192:ooYmsjw0Kq7Ib808OR2eo+1MWKI1SPPcTzcHF6eVIQ2:4nxh02eo+1tSPMz66eVIQ2 |
TLSH | T1DFF10A27BB453769B74380ACAF9D14C3B737891F99903468B76C80802F1D338EA3EA55 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.9/site-packages/sklearn/manifold/__pycache__/locally_linear.cpython-39.pyc |
FileSize | 644 |
MD5 | DEDC0777030F99F44CDC0C1F639A0302 |
SHA-1 | 006B5F362000778E87B7B12D48627274A3E4B35E |
SHA-256 | D240DFCE14EAB3FE01EE5590D047114D679B5C91F7BEE5504CEF9609C85D9ED0 |
SSDEEP | 12:Qi/K2ZILsS/ADJ5leRHhv1nHA20vGeEiuyr6hQBlk6MRcsc3gDn:Q0Wsb3eRJ1nweeERfh0a6Aqy |
TLSH | T167F07D53170B2771DEE176F6245646214AF14A23674D82436F98AD0F75063DA1509A6C |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.9/site-packages/sklearn/utils/_openmp_helpers.cpython-39-x86_64-linux-gnu.so |
FileSize | 35080 |
MD5 | 1801ACBEE8D6CBF50704D049CDD3EBED |
SHA-1 | 0177D7E50ED706AC558CE3329BFFBADFF69559CF |
SHA-256 | 4D3B7CB9EC3604D95041DBEC43C95A1649D13AB2714A3F69A2729E5211F574C5 |
SSDEEP | 768:x7bTLD7zrjOm+WuGe2Om+WuGe2Om+WuGe2Om+WuGe25BpxZhJR5BpxZhJR5BpxZr:xMckrKJN3Fx |
TLSH | T1ADF22A1FF0A14D7CC5A8A630CA9B8A635AB1F455B13016EF1A94FAB72FC36604B77D04 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.9/site-packages/sklearn/ensemble/_hist_gradient_boosting/tests/__pycache__/test_gradient_boosting.cpython-39.pyc |
FileSize | 18790 |
MD5 | 121E2F314CA6D2066C4133BF2F97C314 |
SHA-1 | 01860309E55D0A2BEA2102CAEE069B56E51E1F84 |
SHA-256 | BD0729F078F83C6A8D92DBAF49287198EE503E3B09EF82D788A8CD014F5F6DFE |
SSDEEP | 384:uh4DK95bZogZsP1HeOIYN8O8xmR6JI7OMLevob6Lvc7TSLGpzHOWOV:uhFRitJIEYhJIvb6LvH2HOWOV |
TLSH | T1E78229A6E4436F65FC79F5FD5C2E021C4A54E2AC9382D1B79C50A34F1CD96C82EBA038 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/applications/plot_face_recognition.py |
FileSize | 5673 |
MD5 | E04463D133077965B621853B417E3976 |
SHA-1 | 01A05E69B658947C8718FF96E63992BD7120AFD8 |
SHA-256 | 95EF36678B93D317074819E512B6EB9FD41AD6CF42BE577F6C95F233494D0C95 |
SSDEEP | 96:/WrdZDdY/G+XcXjnW+eV4fcQAY8vxucweFmVFG6kgIOrzTmd1ljF9bw2sbwnHqlN:erbzeV4fcTY2IcxidksKR93sRlZ5Ey |
TLSH | T128C1B57A7A6B3B71D3A760B9A9EC38B43720504E0DB30515338D42D00BB2F78676399A |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.9/site-packages/sklearn/tests/__pycache__/test_multiclass.cpython-39.pyc |
FileSize | 20104 |
MD5 | E02727CA1F32AA860823620225137383 |
SHA-1 | 01CE6529BA789A345611B61252C867AB40DE713C |
SHA-256 | 0D189DE93F38FD4516A4C9A9FC091898CABC319DE6F1CEFFD6B5D856DB5DD9AF |
SSDEEP | 384:+Wc6xRFYmGlBqIwixvt6u6FhFvkxBzJC1m8Bpy:Dc67FYdBZrodFhd+JC1m8B0 |
TLSH | T1B192D778B8036E6BFE36F5FD40A502890E75E3399BCBC5C3D534965E2C006C91FA6A58 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.6/site-packages/sklearn/datasets/tests/test_olivetti_faces.py |
FileSize | 864 |
MD5 | 46B067B890D8EE9DCF4D28E4919A79DE |
RDS:package_id | 294806 |
SHA-1 | 01F046C372BE4464FB3C2A9DE97398EA4358A892 |
SHA-256 | E015CCE430A08EB77D9FD21AF2B4DF518954363646E02C2DC6CFC97456404198 |
SHA-512 | 26E342D5B7B72A6684E5AEA57476532E25A89D55A3DCEBA27E460A63BE877B8531C46059367CD70338C50090E0EB62DDD8681134AF55B112029BD580AAB13DE3 |
SSDEEP | 24:AF94/5eOTyiyrTNyN59L1sGJsJzUJbTm2dvbF:AFK/D+vrIN59LeGiKtaeJ |
TLSH | T11F1152057092120AB25372FA42AEF86397A3FF490F0155F0396BAA80378D9757357039 |
insert-timestamp | 1696437101.8363733 |
mimetype | text/plain |
source | db.sqlite |
tar:gname | root |
tar:uname | root |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.9/site-packages/sklearn/tree/__pycache__/_reingold_tilford.cpython-39.pyc |
FileSize | 4901 |
MD5 | 818A3328CA559D1318C64923363E3209 |
SHA-1 | 01FC8B45AF0A693BE892277ABB30B29CFEF89FD9 |
SHA-256 | 44954A4BED8943C44E60822FD81DBF8049F711499EBD7097A5831B3470D39A5B |
SSDEEP | 96:3mV1S0kx/H3vmsysEj0QudOD2kgSrksO2qobqMP4beC+vfm0QalbXsuHjN+m+Gaq:2Lkxf3vmGI0Quy2gosOO7P4bU3m0Q6Xn |
TLSH | T168A140C04EC2BDBBFD3CF2FE486B0687A33652B69306A25B212151BA1D8B3D45C65818 |