Result for DB1B669F39F603894C0352F271591FBCECDB96AA

Query result

Key Value
FileName./usr/include/libderiv/libderiv.h
FileSize1207
MD513748C9D75323C53022E381166F2C94A
SHA-1DB1B669F39F603894C0352F271591FBCECDB96AA
SHA-25654A96C52C2AC6B798ECBEDC9273DEDF0FDE3401DE639D2A77CD07C862F97382C
SSDEEP24:WBxvxOFxTkzZBxEHlMzGOHbCHe3TJBDIKKRI3DJBDIK3h4nzyWDIKKRtn29WDIKC:OvxOzIZXEHlMyOHbCwJBUKKcJBUK3h4n
TLSHT1DC21E46E8FEC68F6745287A9D5201DA1A472FC9562DCF5C455A1A0ED1D8308033F2DAE
hashlookup:parent-total12
hashlookup:trust100

Network graph view

Parents (Total: 12)

The searched file hash is included in 12 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize2966960
MD56911B82A6F50DF39938102F0173E0E20
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b1
SHA-14C86A3C5D84CD3071747E90B99AFB83B787E5036
SHA-2562E10BB59E1E403C3DA993FF9CE61A9DD0BD70D49A4928C9C8C846F5B7CC5BD97
Key Value
FileSize3852710
MD50722FAB0A3221B89F261973A3585AEF3
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b1
SHA-192ADDA9E8193FE217D97E3D9AE0AFAE16120E8C3
SHA-256A129A43AA80C41884F6036341CF37D07EBF99A2CAC1365F486AECB4D72EB0CFD
Key Value
FileSize3322400
MD5DAC9BFE48E402DEE484459DC22A79707
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b1
SHA-1CC0C95A1B3248BAEE275465A99A2ABE05463059B
SHA-256CA72F1972250D255E4376995EDE508AD2062D464CE22C8598809BC952470B68D
Key Value
FileSize4824596
MD583ECB4289411CA72AA7F596B8708B715
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.5-2
SHA-17328FF04C56B42625D58377256ECCC7188978D07
SHA-256AFECFA001C796ED3767B2844A5DF78D5A8897555B94DF97C4E125F8AEDE59C18
Key Value
FileSize3518594
MD559FB2C88F04C30C695AA51E4BBE6702E
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b1
SHA-1A53163DEDA3A536D922F518AEF8103C548B8D5E9
SHA-256A4F13EC38E56798FC42A0E716875F21D2D5A42316C1C58E66DDC44161E79ECE4
Key Value
FileSize2862972
MD574568A7D47E741D78A44917328D332A3
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b1
SHA-1077C8696D815AA2A1B08F4433F2548B9E1542FB2
SHA-2563F89680F614517F1483CEF0B3B1B704B22785B78B9386F836ED540F3C38AC742
Key Value
FileSize4059596
MD5E14EBD459AC1160DC24413FC78A63450
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.5-2
SHA-191E6B45FA91BA1808A73ACF587F83EE585078213
SHA-25666079AC39091B055D4CF7627E9CA5802E8674439A90448C4129C8961CC34DE24
Key Value
FileSize2813062
MD556A892114A2BDFA4FBB16E02EE8A9908
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b1
SHA-1328859174D33D4D1EF96B52709382D8A2B43C6A0
SHA-256B86DD41F41C92C5925F30AB1BD41E6C21585CAA43D158F7CBCCDA2C90E095487
Key Value
FileSize3056808
MD5EEAED079EBB089CA83642B42A2CDAD55
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b1
SHA-10F519B39BE7DE75DCA410077773A2015A476A759
SHA-25668DA9ACB603CCFE79748E701FE0C99BFB354DB7A0472A1EC24B44685DA9DCC5A
Key Value
FileSize2530598
MD5A33E2715D8C07DFB712376F70A6B956A
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b1
SHA-14A98609073372E160E3C0E6896D1BF7E9AED81B2
SHA-2560FCFA0D65410EA10A9CAFD4A310816DBF63B1E34337DECA8F34CAA1731801A3A
Key Value
FileSize3231774
MD596451C26AA40112EF6A6B4C74DD402F3
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b1
SHA-146D899A4C6BF7E1FC3D55A7C08EC52A958A4ED4F
SHA-25620009AB865BE7C30F2173A8E49DD194C063D23CBAB193F82BF27FB581C20C038
Key Value
FileSize2966618
MD5F3E41DF43A4A599B5573D75B924B2F5C
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b2
SHA-1C204FC8AA8F2FB0D94ED5271D1FCEC974164F770
SHA-256DFF0E078B90633DB496F69533E0BA80D383B0E13E7750F52D81167127FE92634