Result for DA045B84A1109CF88D0FA2150A4FACFF4FC1AE08

Query result

Key Value
FileName./usr/share/dart/cmake/dart_external-odelcpsolverTargets-relwithdebinfo.cmake
FileSize1029
MD52A541347A3B07BBB2791993A972D9931
SHA-1DA045B84A1109CF88D0FA2150A4FACFF4FC1AE08
SHA-256CAA570941C988F03BE82127F4C54DB72AAD906978128E800078D7AA006A37875
SSDEEP24:x3m7dS0qUMYA/MfU4Il7yijSQuhNcNNjSlyjUu:FJUMByiJzTUu
TLSHT192119C328F841BBF0647FC55E4618114C335C3BBE76F6E6E86881E6A91A33DD010E84E
hashlookup:parent-total3
hashlookup:trust65

Network graph view

Parents (Total: 3)

The searched file hash is included in 3 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize29728
MD5040AF2E4E8E4617C15D47F435E502386
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains lodepng headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver-dev
PackageSectionlibdevel
PackageVersion6.9.2-3+b2
SHA-1A90B823C167842D61CF0958E23B2BBACB0D7557E
SHA-256CB369722778F7B93EE44089DCCEFA05CA2F07EC4782FD0F0F5751E7D0C30D5C0
Key Value
FileSize29652
MD50FCE4BEDEBF7CA4EE2289473C3E0AD22
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains lodepng headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver-dev
PackageSectionlibdevel
PackageVersion6.9.2-2+b1
SHA-1FEE1680E30CABDF317805320C621C22AED10D832
SHA-25603F8159864FF18CF05CE5CD3B05A588FC684F63BA3069F397E52702D6C60C667
Key Value
FileSize29732
MD5265B0080D88906062FC755DE9AC8F161
PackageDescriptionKinematics Dynamics and Optimization Library - ipopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains lodepng headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver-dev
PackageSectionlibdevel
PackageVersion6.9.2-3+b1
SHA-14FBDDCAB1BBBF061705372245E698917CDA4922B
SHA-256BDECC3CB3062823B7C0E0990372CA98D94B57786B650998F2FFB066E6CA02071