Key | Value |
---|---|
FileSize | 974148 |
MD5 | 1F24729366C4DB9A7B93F750A766E08C |
PackageDescription | Python package for convex optimization (documentation) CVXOPT is a Python package for convex optimization. It includes * Python classes for storing and manipulating dense and sparse matrices * an interface to most of the double-precision real and complex BLAS * an interface to the dense linear equation solvers and eigenvalue routines from LAPACK * interfaces to the sparse LU and Cholesky solvers from UMFPACK and CHOLMOD. * routines for solving convex optimization problems, an interface to the linear programming solver in GLPK, and interfaces to the linear and quadratic programming solvers in MOSEK * a modeling tool for specifying convex piecewise-linear optimization problems. . This package contains the documentation of the Python module. |
PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
PackageName | python-cvxopt-doc |
PackageSection | doc |
PackageVersion | 1.2.3+dfsg-2build2 |
SHA-1 | D5AC62AEFEEDC52CE13FD9C64B0AA20F8CE79C32 |
SHA-256 | A8BA2AC06739188C27064D5AA35788B9BD690E8EEA1E88F85CA986F9312016F8 |
hashlookup:children-total | 92 |
hashlookup:trust | 50 |
The searched file hash includes 92 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt-doc/examples/book/chap7/expdesign.py |
FileSize | 5122 |
MD5 | 198DE8813E9A4000517EECF1DB3BD1EF |
SHA-1 | 046062AF6D5BB6AD2FE59D9F82B4E5BB8AFFE638 |
SHA-256 | C2647C1AA0A7C8274701B7014FE9459EEAF65EC168A65FFA50B614710BE2DF9E |
SSDEEP | 96:0fYq/bc5HONcD44C5JYrZ427tHyCkS+rHT424ZXPdOEa4Df27Bsuu42Z1:6Y5HO2kdfYdBHyFZ7boXPdju72vL |
TLSH | T1C8B198079802946AFB5FD059C5DA1808472DD26B9C1F381535EC0FC55F6F9B8CE72E49 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt-doc/examples/doc/chap9/floorplan.py |
FileSize | 6264 |
MD5 | 8861A16A6800F8ACC296764A36E0DE41 |
SHA-1 | 05DCAD084657C2DD0E993D408C2BBE1A4F154F78 |
SHA-256 | 3FDCC3EED3D17236AE9F6231A715220B78E64F96D440E44B426941D3BE640699 |
SSDEEP | 96:FqyMe/GNDcmtCoUxUuregp5/O8Yiyn7rkQjbuoxWqBoxWToxWrroxW3:FHMe/GNcVyCVQRHkQf1ROZssE |
TLSH | T1EDD1AA1A46D7F148C23AD07A45C4DC165B298177184C6E9E31BEDFD05F87BE0CD3A92A |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt-doc/html/coneprog.html |
FileSize | 221072 |
MD5 | 2025262929B9D0F27781C8CC808B02BB |
SHA-1 | 0E66522636FDB8E80234C9EB2B8ECA7C7BB01D28 |
SHA-256 | E6E270B5E719344B0BD5F45950B48A9D7F3504AFAF5FC6F073BEA115F51579FA |
SSDEEP | 1536:lJpBFEeGqQMqq98v/TeLhvY+ZXKBnsPufq60ltKkTgNs8Uu:lJRlqHeZ6Fqvg |
TLSH | T1FA2494E4A5F78533053780D3A2EE0B75B4E9482AE4860441B7FD97B887EDD90B817C6E |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap10/l1svc.py |
FileSize | 490 |
MD5 | ECE3CADFD36E59BDEEC93649A1EA7F6A |
RDS:package_id | 182052 |
SHA-1 | 160E78CFFD859CADE5C2C30FA5516C0FF8DF28CD |
SHA-256 | DC5017A9F68AA8739FE16FD574BD7F78C5B25C7B07B7305E0B9724855993792B |
SSDEEP | 12:HK7NQWQ7HBtu4Zz7lyAKRbogbZKxBbhKgFpSBIWEz:q7Ny7S4Zz7lcbogbZKvbhK3Mz |
TLSH | T121F09E07A5B27D14FABB98D5C18D45893FF500AE1D113E951174070ACE598B15CE3CEE |
insert-timestamp | 1679426071.4763906 |
source | RDS.db |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt-doc/examples/book/chap6/robls.bin |
FileSize | 79954 |
MD5 | C823634C3CA1DCB02A864D124B6B1D94 |
SHA-1 | 18CB3ACF1025F618AEC4D84D56D60593272CAE28 |
SHA-256 | CA5DB0B8044A6F01845C6F7C84CC1327BE4615DFE9E684818784C823BCC520E3 |
SSDEEP | 1536:8pDlquwq9Xi8dnpYKZAmXco5WIOCM9zydiqNP2xxqKACo:Eb |
TLSH | T15C7383E02FCC6092EC5AF1A74E3B97F5E32222735587F34D0171A7584F5AA6A0F1A90D |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt-doc/html/_images/normappr.png |
FileSize | 24912 |
MD5 | 451AE7855F8B0CC7983C84FC7C563DED |
SHA-1 | 1AB5CA7F9AF6B6771B27EFD196D1F9DF0D236E4E |
SHA-256 | 24492BF54687BC700696CE020B416E9B117025294959B4F513C0BDF40D5355C1 |
SSDEEP | 384:Mq7MOEhTTF2dqAswRpAY5o8Rt4omnTvLQqRoOCMPvT3DfvYjrUAPDsiP3xH:sburswDXKnfdXTTfU4GF |
TLSH | T1EEB2BF7CC9E3A842F66900F8B2BC646735F722D7104E6648ABF53DACB8B73A5C481495 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt-doc/examples/book/chap6/regsel.bin |
FileSize | 4772 |
MD5 | 5A6E8EA0BE1EA0F3402FF1A4BB634D9B |
SHA-1 | 1BBDA87E104F818B12F7DCA08E568F1CEEDCD7C1 |
SHA-256 | 3F4785F872F24A263CB92F5FE361C9BB127E8AC8D180312B5FF33E17CC31C036 |
SSDEEP | 96:jfNbY4fMDVGvXpWjBfaoDYBpxJYKrGrDeVF+KfWUsvAfnR9T8:jNc3wPpWjBfQJl+K+UEA8 |
TLSH | T192A163901F8CA5E1DC9AF0A76E27A7DAA682267315C3F3C811B46B001F5E697DA0F501 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt-doc/html/solvers.html |
FileSize | 144944 |
MD5 | 285F4AE9D441379D677BD03483C4E617 |
SHA-1 | 1BD5E36A8E7C8BD95EFA51FE1331AC356E5483C5 |
SHA-256 | F4A3F13EDD3AC6027C564E15B0D61A889738947D39C48B66E22D0ACCBAE5A652 |
SSDEEP | 768:I0grbsdEAhG75K2jLRJEPllJQOfjzjMZlh4CfSx5YVKDRk:2gw5K2xYLQO7zA3SfW |
TLSH | T1F0E385D4E5FB81330537C1D3A7EE0B25B4E9482AE5860441A3FDA3B887EDD907817D6A |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt-doc/examples/book/chap8/placement.py |
FileSize | 5160 |
MD5 | 5131F305602CC2354359E05497CE4E74 |
SHA-1 | 1E45E203266D1E8DF515B1AA3767E6FA987A1461 |
SHA-256 | 2431395F2310A6EA9CB05781DD7240FFDA5781B2A5AA9F2954FE3EBC17C24059 |
SSDEEP | 96:iAH1nH1qMXjY7HCndgef7vJQoGfbYcuKGdIr5uLp4vI1GI2XNp4FI1xTPFRp4JIz:i6zE7HCd1f7vJQBfcFKUItnKeIKdsKd |
TLSH | T164B17247648386BE5B1BC0E5C4DE2900162890B7640D901432FE4FE6AF4BEFEDE79E55 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt-doc/examples/book/chap7/maxent.py |
FileSize | 2718 |
MD5 | 7BB941B63D091C3DE02468C14DA17C52 |
SHA-1 | 1FE073696688F967DFCCB4F63DC1B98B53074DD8 |
SHA-256 | CBD38CEDEE2CCCE86591CEFAFE19F8BFC787F246B1760DBEEDE54BDAED4081EC |
SSDEEP | 48:/J2a1qc8thYMhvVDKd9Q2339/WwBsTRrtx2mF5yr6n+/YGlXWls9ICZjLWn3nZyA:hyxOMVZC3t/Jsx2y5yr6nhGkcrh0Uc |
TLSH | T1EE5195A6428BA415DB27C0BAD0DD28487F1EC462F80E3060B4FD5EC45FAB2F1C6B4E16 |