Result for D4F956D7B0E364C8325A83274641DD28FCDB96B7

Query result

Key Value
FileName./usr/share/dart/cmake/dart_collision-bulletTargets-relwithdebinfo.cmake
FileSize987
MD55A9FB1A956F0C42E10788CA453958879
SHA-1D4F956D7B0E364C8325A83274641DD28FCDB96B7
SHA-25602816FD81C58A0BD08B0A7D0EA8C7C3F495D0AAC14796A6D221872B3AE0F1449
SSDEEP24:x3m7dS0qUMYALpfgXIR0yOHmfh5P5gHKjUu:FJUMGyOY+SUu
TLSHT1DB11C01D5F8C55A741A6FE4539C321F4E076D3F687CA390DB145139D227091B116ED1B
hashlookup:parent-total5
hashlookup:trust75

Network graph view

Parents (Total: 5)

The searched file hash is included in 5 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize25416
MD575A842E3D4F53A151562C9487D4030BD
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-3+b1
SHA-116D6DBE6F3528D345D2AC57E1B34816B9101CF1A
SHA-2567427410D225869C956331A24BED9E31B18555ED38FF6AD26557444CEBF6B47BD
Key Value
FileSize25132
MD51878F264C5B82A247DE2434F9EC63996
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-3
SHA-1B11FDEA6A3283F520D5C2AA17CAEAC2D1CED276A
SHA-256224D2414B9A9583D5CB9117EEF5A83C9835943E93DD6A6765E2E381C0E68620E
Key Value
FileSize25188
MD54D659ECD45FB70DECB964CB69A968501
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4
SHA-1EA1C3D197BB5672097951049045C9D42848F42C9
SHA-256FC0612C9750BD96AA8850905FA6F7AC8D8F176D9709D9DC3D409E67A20691E3D
Key Value
FileSize25476
MD595B2D35FC0D69721EC5CAE36B4A9DD54
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b2
SHA-15B28A46A0C3021CCE189468A82834443C23652E6
SHA-256826D6DD5475727F9E98AFF227C6BF712D2996924AA97FA2BA51CD0E3932A9BE6
Key Value
FileSize25476
MD55013A6B0C3F7B03E077A9CEEE7F73410
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b1
SHA-1F31C458C21E5E388D9091AC82B8609433CDDCAC9
SHA-256DCCB6295439395FCA2ED2ABDC504B1A729F4926B8B8D2D5EE149C6810D4F4BDC