Result for D485DF7805397141626C57B45FA87B307DED3B19

Query result

Key Value
MD57CFEEC4C24C01483E892298BFA5817D3
PackageArchppc
PackageDescriptionScikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts.
PackageMaintainerFedora Project
PackageNamepython3-scikit-learn
PackageRelease3.fc20
PackageVersion0.14.1
SHA-1D485DF7805397141626C57B45FA87B307DED3B19
SHA-256E77BC6E49AE458FE84B1826BC4E3BCB5103DFA740B2FA78B6FD8A8E53605F702
hashlookup:children-total801
hashlookup:trust50

Network graph view

Children (Total: 801)

The searched file hash includes 801 children files known and seen by metalookup. A sample is included below:

Key Value
FileName./usr/lib/python3.3/site-packages/sklearn/__pycache__/naive_bayes.cpython-33.pyo
FileSize24015
MD5A7EEE95EB08872ECE185B63E6B1652F1
SHA-10008ACC2F9FB3883984AB04B7E33A01AE5298BB1
SHA-2566AD7FA7BA1DB845A5E4C81F95083B1B053E0CC7E2519119B0223CD27109DCA28
SSDEEP384:MGLtNi4yqMDoxE3zpoXxPR5HiDiOasKi/Di24PkOzCM/fEO8K0jKYF3FlsMvZiG8:MG5gdqkoxE1gnkH7fakOzCAfEnpLVlsT
TLSHT159B2D649AF2D4AFBD463877220F10146DE62A6BB8A841B0134FEE5712FC1B76173F649
Key Value
FileName./usr/share/doc/python-sklearn-doc/examples/linear_model/plot_ols_ridge_variance.py
FileSize2032
MD544A08C8EAB78FA8522617D143280CE43
SHA-1002D35237E1045669AE711D219C5C7E2C828DF64
SHA-256DF23A76B9DA4857633A934C3CDEAC1FB3F1C3C0BFA5266F2CF148F22CC3F7240
SSDEEP48:4YOa+3VOPSAN5mAOxGwq0JcrsyPAhpa2b7TyJANfeK6AK/l:4YOTlvsmAOxGwvJdyP7ifmWeK6Ail
TLSHT15841861B62861B73A337942DBDB9329C7351409F79427CA57BFC61085F8172C0EB94B5
Key Value
FileName./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py
FileSize2407
MD56CCA3A2DFA57FF6AF3CF3A27AE22F209
SHA-101070C25205C477A297A7CCE48DA78871F64DD2C
SHA-256298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8
SSDEEP48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq
TLSHT1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD
Key Value
FileName./usr/share/doc/python-sklearn-doc/examples/exercises/plot_iris_exercise.py
FileSize1577
MD53CEE1240FBA2960897069B76B5637772
SHA-10116272B06B5037C5FC6E48E289CAD5FC1E6CC61
SHA-256BE809F9603D572D38F9B2B5C30FDDBC3865711F28480FD46C2EDFED3DB78BC83
SSDEEP24:/AX9SV6wq4Vxknvg059WbkKX52BrpH2sCU5tkLtmGvItyG4bxpZNbH/D:IXcVVVqrKX5m8lMtggGPbxfNz/D
TLSHT1F031201A904E337213C790BD82EB29846B5366234B44687A777DB7D1DF02764F239942
Key Value
FileName./usr/lib/python3.3/site-packages/sklearn/cluster/tests/__pycache__/test_k_means.cpython-33.pyo
FileSize31295
MD58CD2C2355E65A5A952CFBA8938552937
SHA-10214DC1B2E3E291B4CBBF42E031B2FA2AD13644F
SHA-256562C80258290AB00BEDC1ADD76F7C3139BEBE74AC9BFBF012306F28CE80E8EE2
SSDEEP768:UAv0v5P1dw5o8AsjzV7loiu5DthtW7p5dRZPerGTo15OR+VAEFD5E5bRI9Pr5UmV:jMvzOwiOwYb55lwtK+Ki/3lBm9Ga
TLSHT139E2429153FF8BD3D8F1B6B868281322DE52F8B29D90AF412770B07C25C663E356B546
Key Value
FileName./usr/lib/python3.3/site-packages/sklearn/datasets/__pycache__/species_distributions.cpython-33.pyo
FileSize9069
MD5F09E18D945345C00F8412C343CC3FFB9
SHA-102468E66AB473EF88813B180BAC32F9D16B4C41F
SHA-2568B4C8CD07F61CD428212F14E89E74E9919B32FCF85784E4F8EA83C518FFC7C6A
SSDEEP192:zOD9a7u9JXJRJqJ93SJ/NnndFbJpq79Je+qutNJL3TYvRw3TWmJTTq4JOW:M9zj5/+9WpNUH/fYEySTTqAOW
TLSHT1081272843FAE4BF5D1B156B865791202D763F9AFE2002704729CE0A42F4DF325ABF681
Key Value
FileName./usr/share/doc/python-sklearn-doc/examples/plot_rfe_digits.py
FileSize852
MD59103650C2F36397AB88DF835B34D38B5
SHA-102C0A867F5D8E9C34607BCE93EF5ABF7C6F495A9
SHA-2569F282DADA6645094618C0A5BFA1913CC17F1384A2BBEC0B7B7783AB89CBE9928
SSDEEP12:ilgJr4Y/8OREMeyAMyfbyvmvA9NZfXALqSkAVL/KO5Oe4N6sYD:iqh4E8HyLyTyOEfXALCAVIGh
TLSHT141011E5D5220B7771DB758B582F5809319F20D3A2341622015A8CA658B82BB6FFF7A43
Key Value
FileName./usr/share/doc/python-sklearn-doc/examples/plot_kernel_approximation.py
FileSize7974
MD592E29404D8F074E46F35C40F20766AB8
SHA-102FB35C9AF06F6F6872DFFCAAC0A51570D42B6A2
SHA-256BF5D973C48EC576C568FF9ECFB74EA75395EBF29B4D1C19AB82D210B6A4DDCF4
SSDEEP96:0X75FrUiJKIiRjQBdLdgooMgFYZygEqTgR/KYIOcITTmpsm51iuPztYi:+75FQiti6KYZkR/KYIOcITq1iuhYi
TLSHT17CF1E80B20E30B3223B7207C23DC21C7BFA49056E9975A3DF99D8654379AF21E276649
Key Value
FileName./usr/share/doc/python3-scikit-learn/examples/ensemble/plot_adaboost_multiclass.py
FileSize3585
MD534017803563CB9F9B635C002523C75AB
SHA-10322042E7BF79C438AD29D097C0E77A689587F33
SHA-25650E1E9107975866013E5FFB4FA9033867E9BB126CC32959A3E9CC4E3E4204164
SSDEEP96:ir9H8frWUXgINfBhroMYbPXwW/K/oKR6m257TwDLj5dlTn2093:DC3iXR6mp1N
TLSHT1F07193258A666A3187B96CFECCAC526D3360144C9D22D009B5FD8F300F0BF19ECBA2D4
Key Value
FileName./usr/share/pyshared/sklearn/cluster/spectral.py
FileSize19089
MD57F39F2175913371EB02C1FC7AD23163A
SHA-103C4601BEAD359C5B92ED2D0FA173AB399D8C9FE
SHA-256E4FAABA262F99730C34B8078D83DACC8BF18776F391D8A9657004B8524E70BE8
SSDEEP384:M+X/Q0+fEqCC56so+IRrREezf61red3/YV7i/aD6VHnNW5ajWlFYV7wJC1S/a703:M+X/Q0kEqCC56soTPloret/WW/aD6741
TLSHT17582D739394262379C87E09289FE20A68364058F8F537455B99DC6281F13E7873BEFD5