Result for D29572306764D25A5489BD3778E6A4508851DEDF

Query result

Key Value
FileName./usr/share/doc/libghc-enumerator-prof/buildinfo_i386.gz
FileSize2971
MD57906D54F841B9C183B77727AC9173CFA
SHA-1D29572306764D25A5489BD3778E6A4508851DEDF
SHA-256A15024D74636287073E7856A90FA9DF9FA93B4B3F72BC88FF4B7AA896D544816
SSDEEP48:XIjq9A/gxyEtxN1tOx/ljvW7QAS70o1VT+pRGctZeTq2rfbJJfZv4swkNacEO3vc:sq9A/g0ExDOx/ljvW7Qso/ARGqMq2rrY
TLSHT19D515D2866F2B46395507BA003AE574095604AE946F70A41E9D4D9222BA670577082BB
hashlookup:parent-total2
hashlookup:trust60

Network graph view

Parents (Total: 2)

The searched file hash is included in 2 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize257224
MD53688CBA265194784384B26E710037AC1
PackageDescriptionhigh-performance left-fold enumerators; profiling libraries Typical buffer–based incremental I/O is based around a single loop, which reads data from some source (such as a socket or file), transforms it, and generates one or more outputs (such as a line count, HTTP responses, or modified file). Although efficient and safe, these loops are all single–purpose; it is difficult or impossible to compose buffer–based processing loops. . Haskell's concept of "lazy I/O" allows pure code to operate on data from an external source. However, lazy I/O has several shortcomings. Most notably, resources such as memory and file handles can be retained for arbitrarily long periods of time, causing unpredictable performance and error conditions. . Enumerators are an efficient, predictable, and safe alternative to lazy I/O. Discovered by Oleg Kiselyov, they allow large datasets to be processed in near–constant space by pure code. Although somewhat more complex to write, using enumerators instead of lazy I/O produces more correct programs. . This library contains an enumerator implementation for Haskell, designed to be both simple and efficient. Three core types are defined, along with numerous helper functions: . Iteratee: Data sinks, analogous to left folds. Iteratees consume a sequence of input values, and generate a single output value. Many iteratees are designed to perform side effects (such as printing to stdout), so they can also be used as monad transformers. . Enumerator: Data sources, which generate input sequences. Typical enumerators read from a file handle, socket, random number generator, or other external stream. To operate, enumerators are passed an iteratee, and provide that iteratee with input until either the iteratee has completed its computation, or EOF. . Enumeratee: Data transformers, which operate as both enumerators and iteratees. Enumeratees read from an outer enumerator, and provide the transformed data to an inner iteratee. . This package provides a library for the Haskell programming language, compiled for profiling. See http://www.haskell.org/ for more information on Haskell.
PackageMaintainerDebian Haskell Group <pkg-haskell-maintainers@lists.alioth.debian.org>
PackageNamelibghc-enumerator-prof
PackageSectionhaskell
PackageVersion0.4.20-6+b1
SHA-14F48053CF73446EABA582A318D3738701EE8299E
SHA-256EAABFC0AA771A4D02E7433FFB68535A4A1EEC2268B31AC750CCCEBBF11862902
Key Value
FileSize232866
MD5C6F1F7EDF19F49CB80F12C25069E1A94
PackageDescriptionhigh-performance left-fold enumerators Typical buffer–based incremental I/O is based around a single loop, which reads data from some source (such as a socket or file), transforms it, and generates one or more outputs (such as a line count, HTTP responses, or modified file). Although efficient and safe, these loops are all single–purpose; it is difficult or impossible to compose buffer–based processing loops. . Haskell's concept of "lazy I/O" allows pure code to operate on data from an external source. However, lazy I/O has several shortcomings. Most notably, resources such as memory and file handles can be retained for arbitrarily long periods of time, causing unpredictable performance and error conditions. . Enumerators are an efficient, predictable, and safe alternative to lazy I/O. Discovered by Oleg Kiselyov, they allow large datasets to be processed in near–constant space by pure code. Although somewhat more complex to write, using enumerators instead of lazy I/O produces more correct programs. . This library contains an enumerator implementation for Haskell, designed to be both simple and efficient. Three core types are defined, along with numerous helper functions: . Iteratee: Data sinks, analogous to left folds. Iteratees consume a sequence of input values, and generate a single output value. Many iteratees are designed to perform side effects (such as printing to stdout), so they can also be used as monad transformers. . Enumerator: Data sources, which generate input sequences. Typical enumerators read from a file handle, socket, random number generator, or other external stream. To operate, enumerators are passed an iteratee, and provide that iteratee with input until either the iteratee has completed its computation, or EOF. . Enumeratee: Data transformers, which operate as both enumerators and iteratees. Enumeratees read from an outer enumerator, and provide the transformed data to an inner iteratee. . This package provides a library for the Haskell programming language. See http://www.haskell.org/ for more information on Haskell.
PackageMaintainerDebian Haskell Group <pkg-haskell-maintainers@lists.alioth.debian.org>
PackageNamelibghc-enumerator-dev
PackageSectionhaskell
PackageVersion0.4.20-6+b1
SHA-1D65DF9BB76EBFF566B0C6D3DB29F879D326AACCB
SHA-256ED6CC8FF3AAB551BFB9C611ABC6BEFA2DB93638A3E7E9C0049BCF643409D55AF