Result for D0872DA54D737017910B83BE38824543E943693D

Query result

Key Value
FileName./usr/share/dart/cmake/dart_collision-bulletTargets-relwithdebinfo.cmake
FileSize1001
MD5C995B5E66E0B0FB201C339E5E771C7FC
SHA-1D0872DA54D737017910B83BE38824543E943693D
SHA-256B78242BD55E4F7EB9151E3163D165C7F261790B173E7E586DBBE5A29497CD321
SSDEEP24:x3m7dS0qUMYALpfgXIR0y3Umfh5P5FUKjUu:FJUMGynNUu
TLSHT1EC119C5E4F8869B741E6EE4535C321F4E076C3E796C6390DB145139D236091B116E81A
hashlookup:parent-total5
hashlookup:trust75

Network graph view

Parents (Total: 5)

The searched file hash is included in 5 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize25476
MD5EDA99A8AF8B6791C4CA930DE9AAACFFD
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b2
SHA-1C53CD38B901F54DFD6DFA0F98738B866C8FA3B3B
SHA-256739B264F3E2915313816F674562CA713659C388C7C0E5A4AA7E9AC8C43F916FB
Key Value
FileSize25132
MD5810E7284795C672C1644D1BB0A3D3F48
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-3
SHA-1CC5111A6ACE584D8C41866F623265E043062D829
SHA-25629F34023EC219839051E4160673ACE8AFE31AB14163AE0B5194809583A5019BE
Key Value
FileSize25476
MD5C03EA2D3478E4368C329C7EA1516C327
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b1
SHA-1292DC2A8EE365F96AEF87E93836AFE070F25C636
SHA-256838DD3C7EE0CAE636B26F145624127A6929FB225B85BC682D081D722601591C6
Key Value
FileSize25420
MD51E4849282042DFA57C6791070E763B98
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-3+b1
SHA-1212D2F9A47BF641C882B395FDA9627C90D318635
SHA-2567B53A3B43FF70EC80B860DB3EA1F97461035256A5A54E34156653F03F59BBA10
Key Value
FileSize25196
MD5397D2A794274272B3D93C8F0BD958ADA
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4
SHA-12CCB6D600CAF5B489BDD438055D5184589FE3048
SHA-256D463E69901589BC7CCCBDE0CBD1A4553152BD0491C33905947FC909BEB209046