Result for C7D9E7D8F5E6E00026259BF6E1C864927A91277F

Query result

Key Value
FileSize1773332
MD558825164536D779BA00A396133613FE2
PackageDescriptionPython package for convex optimization CVXOPT is a Python package for convex optimization. It includes * Python classes for storing and manipulating dense and sparse matrices * an interface to most of the double-precision real and complex BLAS * an interface to the dense linear equation solvers and eigenvalue routines from LAPACK * interfaces to the sparse LU and Cholesky solvers from UMFPACK and CHOLMOD. * routines for solving convex optimization problems, an interface to the linear programming solver in GLPK, and interfaces to the linear and quadratic programming solvers in MOSEK * a modeling tool for specifying convex piecewise-linear optimization problems.
PackageMaintainerUbuntu MOTU Developers <ubuntu-motu@lists.ubuntu.com>
PackageNamepython-cvxopt
PackageSectionpython
PackageVersion1.1-1build1
SHA-1C7D9E7D8F5E6E00026259BF6E1C864927A91277F
SHA-25613F38304977DC898E889F386214E1C7FD4D8C50E81A28CDE58D449C15C545639
hashlookup:children-total97
hashlookup:trust50

Network graph view

Children (Total: 97)

The searched file hash includes 97 children files known and seen by metalookup. A sample is included below:

Key Value
FileName./usr/share/doc/python-cvxopt/examples/doc/chap10/l1svc
FileSize497
MD5807B22DC8014D1B7E6768D6B62CBF616
SHA-100BEC9B75D0619A6A99864C48EA703E1AFF37E66
SHA-256F4EF025AE46900DE439C2D98A061F15AB13BD46416E48E9243D95D158A78912F
SSDEEP12:He4AF7NQWQ7HBtu4Zz7lyAKRbogbZKxBbhKgFpKBIWEg:+NF7Ny7S4Zz7lcbogbZKvbhKvMg
TLSHT160F09E0B60627D24EBB7DCD5D18D45997FF500AE1D113E951170070ACE698B05CE3CDE
Key Value
FileName./usr/share/doc/python-cvxopt/examples/filterdemo/README
FileSize445
MD51836C6FE26415939D5A6F32D3E1A1E34
SHA-1020D546E5EF64BE6333D2E45BE1B1DFC32F83C35
SHA-256E0BD74AB3AB9E69F55A77A6DEDC7BDE44750C3D250DAFABB2FC61E121AF03095
SSDEEP12:eZsDkMJ4/REY7AIKI08goCShQRv26NepL5XFHncqCcoCPPpG:oKkMJ/Y72I0KCQ0v26UpLZFHncjCZG
TLSHT123F02300C40D7DF4E342201BFD321470D8B5C90C23EA30195CFC56E55943DB0D4D1A90
Key Value
FileName./usr/share/doc-base/cvxopt
FileSize897
MD5CAD6E0ABED96D43BF642EB9273BF8F1F
SHA-102420D85C5115E7CA1D03CC20DA14992EB80654D
SHA-25638F54547C2E74F57E87973242DD743D162281EC8F4A96CC808076EB5C83BB79C
SSDEEP24:6tAyp0aJbWGfxyq8ciKKSuCYqZxpNqDEx6AYqLNm438SsqCSdVlE:QKCbuq8ciKBYKzDxfYaNm4TjxdVlE
TLSHT10911231C916235BC451271CDC78119108F3815A9720B63994C7844B233CB9D9937F3EB
Key Value
FileName./usr/share/pyshared/cvxopt/printing.py
FileSize5495
MD5EC8EDB24392E168A698F0782790DEC56
SHA-10556AB5D8E5A8B3DACD60646E00DCC84C6B2B470
SHA-256D0D873CCA1D6850DFB23DE84C24692A4EEE1A4EB9770FE1BEAA5BFB878E0DCF8
SSDEEP96:PvPzR5w1we2/SfGczwtQ10HS9MizYu/UCtgi:X7R5w1weaSfvwtgUSqizYpCai
TLSHT126B12249A5713279C18F056B5CDA404F232BCA97771895303A1D63E90FC36B657B0FB9
Key Value
FileName./usr/lib/python2.5/site-packages/cvxopt/lapack.so
FileSize189476
MD5029E439397F4BFC6BEFFD56394883095
SHA-107C7A35FEDA776BEBD0612A73E3F82F85C203E85
SHA-2560DFB41B0D2C8AC80CD4710EA2482623FE1CFFE86C7BBFBC833A2CBA70C8F2DC1
SSDEEP3072:TKc9cvAi2j19UxYBQNn7xwbqm4+DirmwUYlDCNJq:T8+9UOBQNn7iarf
TLSHT1AC04C4333B792270C851973A40776D63EA7C4B611598EA577BCE0E3C2F929C056A3B93
Key Value
FileName./usr/share/doc/python-cvxopt/examples/book/chap4/rls
FileSize2150
MD52A30115F6FD41D1A7A42C043BB92AD80
SHA-109C6C645F20A77C3DA7D67B6DA4F3DC9071B2561
SHA-25653269EBCE14E334B2F6228C18BFFBE13A3603A4EE9F0B97EE7AC203D3AC508E8
SSDEEP48:jsgIh5vtaKKgLQmKmkRaaqL8PecqLlZ9GQffQn15eXiYtqf:jsvXv3KgspnvPeHQw615eyYk
TLSHT10641745EF453BFB90D5BC0BED2E93A094B6921BB8D09A912341C2B55C7D3CCC5074A16
Key Value
FileName./usr/share/doc/python-cvxopt/examples/book/chap6/huber
FileSize1815
MD50018CD52B9B1E9D11559CDC8B55DB98E
SHA-10F19013FC870E43C5D00F21930040DFE0E433299
SHA-256759E90D83EE2115618153D69735C1E13478448BA70E7ECBC120F0B03CC2ABB8C
SSDEEP48:+2s7ngZaTVnWX8LhwO2VFXWxKyS2kDHVYZp8:+2sLnVTL6O7dSDRYZy
TLSHT19531FF28E26BA01E86CBC0B6F4D4FF930E51859DBD06AC56772C9DC4BB0B5558E3C287
Key Value
FileName./usr/share/doc/python-cvxopt/examples/book/chap6/inputdesign
FileSize1840
MD5724FDCD7D1DBB7D02DA5E89D8F04A5A0
SHA-113D7FCB341784540EE1244D9F288D0DC5E586772
SHA-2569B53B64C8857CD85C4838C00A69B4496A140AC25584D5868E57707699DA819F3
SSDEEP48:+2Ajn5rJZnKhaQ9GwamkZrm1gG1UQyOgEgeFhgEf:+2Ajn5rJZnMJYVmkZrm1gG1hyOgEgeFD
TLSHT10931EE0A77CE5D56575FE1EDE3E13B05077A826E3E1E2876B13D2D58AC8B8CB4832810
Key Value
FileName./usr/share/doc/python-cvxopt/examples/doc/chap8/coneqp
FileSize608
MD57B609C1E5DFD914CFC8F0FCA3C998A8D
SHA-11841C40EEB0074795CED94E3150BEF8B5EB12C08
SHA-256B9706533031DF4EB65175C810C55505DF9E0F0D59A98C4E05FB747E7E48EA2C4
SSDEEP12:HYGtjXK/sOf7NQULrVlBE9I81NaJnjkar4nkMIal3nV7:4GtjnC7NfPB+I8ijkdkMlF7
TLSHT111F0284BC006B828E6B4E02A885A2C920E75DD086D2BB0003D3E55A08FAA2A2CD35756
Key Value
FileName./usr/lib/python2.5/site-packages/cvxopt/dsdp.so
FileSize21192
MD5A9BAAB9C7DF7C61BD164A045D24FDEC7
SHA-119E51DC839DDC94E0D722B13869EAFF09FAE5306
SHA-256CEDE92AE5CF85B32B980DC2E89F6602D2EE4DB5DE5AC9E5F6E70948D9AA9E517
SSDEEP384:VDelpB9zEEKer0HF2nEfudcs66XeB80tlX:Vif9j/owL66Nu
TLSHT1C192E95727AD2B27C0E01B7440F78733AB5E4A5069E6530F3D8D0C1A2F86A916D777D2