Result for C2C7F3EDAB01A285B51D4450234A2B6D4799453D

Query result

Key Value
FileName./usr/share/doc/postgresql-11-ogr-fdw/changelog.Debian.gz
FileSize1133
MD5D6521BAD8105C4E77D45802BE7D21737
SHA-1C2C7F3EDAB01A285B51D4450234A2B6D4799453D
SHA-2561EBCFB0183807CDC1AB7D4DD81F9622D82B456BB3C242682599F14307A77BBA3
SSDEEP24:Xe/NMZvWapNf+kEIQfVFanF6v6AYLKNUZZtd8A3dI6v8TRBaLm:XXvWEx+fIQfaAvrJNUpd1tI6UVBD
TLSHT176212930EB7C165FC8E780456080A3A4CD251A9945C8E36F5B3F93E41B7DC823B100DC
hashlookup:parent-total10
hashlookup:trust100

Network graph view

Parents (Total: 10)

The searched file hash is included in 10 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize83560
MD5AEA8706CD56F52A288D42D8739B9CE8B
PackageDescriptionPostgreSQL foreign data wrapper for OGR OGR is the vector half of the GDAL spatial data access library. It allows access to a large number of GIS data formats using a simple C API for data reading and writing. Since OGR exposes a simple table structure and PostgreSQL foreign data wrappers allow access to table structures, the fit seems pretty perfect. . This implementation currently has the following limitations: * Only non-spatial query restrictions are pushed down to the OGR driver. PostgreSQL foreign data wrappers support delegating portions of the SQL query to the underlying data source, in this case OGR. This implementation currently pushes down only non-spatial query restrictions, and only for the small subset of comparison operators (>, <, <=, >=, =) supported by OGR. * Spatial restrictions are not pushed down. OGR can handle basic bounding box restrictions and even (for some drivers) more explicit intersection restrictions, but those are not passed to the OGR driver yet. * OGR connections every time Rather than pooling OGR connections, each query makes (and disposes of) two new ones, which seems to be the largest performance drag at the moment for restricted (small) queries. * All columns are retrieved every time. PostgreSQL foreign data wrappers don't require all columns all the time, and some efficiencies can be gained by only requesting the columns needed to fulfill a query. This would be a minimal efficiency improvement, but can be removed given some development time, since the OGR API supports returning a subset of columns.
PackageMaintainerDebian GIS Project <pkg-grass-devel@lists.alioth.debian.org>
PackageNamepostgresql-11-ogr-fdw
PackageSectiondatabase
PackageVersion1.0.7-2
SHA-1AC317094098ED3DC91ECC7926B80377871490AB2
SHA-256DD643136A1D5B2557214FEC851F10C1E478A115D2FF633A8A25EE4424BC8AA48
Key Value
FileSize84172
MD54E31BD76B1492834CB27F219339CBC48
PackageDescriptionPostgreSQL foreign data wrapper for OGR OGR is the vector half of the GDAL spatial data access library. It allows access to a large number of GIS data formats using a simple C API for data reading and writing. Since OGR exposes a simple table structure and PostgreSQL foreign data wrappers allow access to table structures, the fit seems pretty perfect. . This implementation currently has the following limitations: * Only non-spatial query restrictions are pushed down to the OGR driver. PostgreSQL foreign data wrappers support delegating portions of the SQL query to the underlying data source, in this case OGR. This implementation currently pushes down only non-spatial query restrictions, and only for the small subset of comparison operators (>, <, <=, >=, =) supported by OGR. * Spatial restrictions are not pushed down. OGR can handle basic bounding box restrictions and even (for some drivers) more explicit intersection restrictions, but those are not passed to the OGR driver yet. * OGR connections every time Rather than pooling OGR connections, each query makes (and disposes of) two new ones, which seems to be the largest performance drag at the moment for restricted (small) queries. * All columns are retrieved every time. PostgreSQL foreign data wrappers don't require all columns all the time, and some efficiencies can be gained by only requesting the columns needed to fulfill a query. This would be a minimal efficiency improvement, but can be removed given some development time, since the OGR API supports returning a subset of columns.
PackageMaintainerDebian GIS Project <pkg-grass-devel@lists.alioth.debian.org>
PackageNamepostgresql-11-ogr-fdw
PackageSectiondatabase
PackageVersion1.0.7-2
SHA-11AAA1F7058933361ADF43F483C9225833583D31A
SHA-2563F1E05D277900F0E130A6EB5E83D907EE048485E416053B609D3D97C575294A9
Key Value
FileSize83928
MD57C5EE1E4096EF9E003BB80DC049877D6
PackageDescriptionPostgreSQL foreign data wrapper for OGR OGR is the vector half of the GDAL spatial data access library. It allows access to a large number of GIS data formats using a simple C API for data reading and writing. Since OGR exposes a simple table structure and PostgreSQL foreign data wrappers allow access to table structures, the fit seems pretty perfect. . This implementation currently has the following limitations: * Only non-spatial query restrictions are pushed down to the OGR driver. PostgreSQL foreign data wrappers support delegating portions of the SQL query to the underlying data source, in this case OGR. This implementation currently pushes down only non-spatial query restrictions, and only for the small subset of comparison operators (>, <, <=, >=, =) supported by OGR. * Spatial restrictions are not pushed down. OGR can handle basic bounding box restrictions and even (for some drivers) more explicit intersection restrictions, but those are not passed to the OGR driver yet. * OGR connections every time Rather than pooling OGR connections, each query makes (and disposes of) two new ones, which seems to be the largest performance drag at the moment for restricted (small) queries. * All columns are retrieved every time. PostgreSQL foreign data wrappers don't require all columns all the time, and some efficiencies can be gained by only requesting the columns needed to fulfill a query. This would be a minimal efficiency improvement, but can be removed given some development time, since the OGR API supports returning a subset of columns.
PackageMaintainerDebian GIS Project <pkg-grass-devel@lists.alioth.debian.org>
PackageNamepostgresql-11-ogr-fdw
PackageSectiondatabase
PackageVersion1.0.7-2
SHA-1E97522F7F5A0359CA3CA207D8CD3A6970E3D4A58
SHA-256EEB50CE102AFB8B9080614D3C954C6702071CC67F5BD199E59FC9F0C7F7B5EAF
Key Value
FileSize90988
MD554E8F53C5C1E6BEEF12B724361E88715
PackageDescriptionPostgreSQL foreign data wrapper for OGR OGR is the vector half of the GDAL spatial data access library. It allows access to a large number of GIS data formats using a simple C API for data reading and writing. Since OGR exposes a simple table structure and PostgreSQL foreign data wrappers allow access to table structures, the fit seems pretty perfect. . This implementation currently has the following limitations: * Only non-spatial query restrictions are pushed down to the OGR driver. PostgreSQL foreign data wrappers support delegating portions of the SQL query to the underlying data source, in this case OGR. This implementation currently pushes down only non-spatial query restrictions, and only for the small subset of comparison operators (>, <, <=, >=, =) supported by OGR. * Spatial restrictions are not pushed down. OGR can handle basic bounding box restrictions and even (for some drivers) more explicit intersection restrictions, but those are not passed to the OGR driver yet. * OGR connections every time Rather than pooling OGR connections, each query makes (and disposes of) two new ones, which seems to be the largest performance drag at the moment for restricted (small) queries. * All columns are retrieved every time. PostgreSQL foreign data wrappers don't require all columns all the time, and some efficiencies can be gained by only requesting the columns needed to fulfill a query. This would be a minimal efficiency improvement, but can be removed given some development time, since the OGR API supports returning a subset of columns.
PackageMaintainerDebian GIS Project <pkg-grass-devel@lists.alioth.debian.org>
PackageNamepostgresql-11-ogr-fdw
PackageSectiondatabase
PackageVersion1.0.7-2
SHA-1577A80415161F7CEB89DD81E0A331F59651C57E6
SHA-256490D2D9EC23E29A05180DF8F3AD2EF68821C21A8CB193D080FCE165352B79E26
Key Value
FileSize80912
MD5260B4B44061345C2CE4E90CC495D42B7
PackageDescriptionPostgreSQL foreign data wrapper for OGR OGR is the vector half of the GDAL spatial data access library. It allows access to a large number of GIS data formats using a simple C API for data reading and writing. Since OGR exposes a simple table structure and PostgreSQL foreign data wrappers allow access to table structures, the fit seems pretty perfect. . This implementation currently has the following limitations: * Only non-spatial query restrictions are pushed down to the OGR driver. PostgreSQL foreign data wrappers support delegating portions of the SQL query to the underlying data source, in this case OGR. This implementation currently pushes down only non-spatial query restrictions, and only for the small subset of comparison operators (>, <, <=, >=, =) supported by OGR. * Spatial restrictions are not pushed down. OGR can handle basic bounding box restrictions and even (for some drivers) more explicit intersection restrictions, but those are not passed to the OGR driver yet. * OGR connections every time Rather than pooling OGR connections, each query makes (and disposes of) two new ones, which seems to be the largest performance drag at the moment for restricted (small) queries. * All columns are retrieved every time. PostgreSQL foreign data wrappers don't require all columns all the time, and some efficiencies can be gained by only requesting the columns needed to fulfill a query. This would be a minimal efficiency improvement, but can be removed given some development time, since the OGR API supports returning a subset of columns.
PackageMaintainerDebian GIS Project <pkg-grass-devel@lists.alioth.debian.org>
PackageNamepostgresql-11-ogr-fdw
PackageSectiondatabase
PackageVersion1.0.7-2
SHA-13A80F90B710544EC4941F8E2A30E03FD9C4B9944
SHA-25640D473C1DDFD8A8533E3CCA556EE1367053D6E4639A6F71DFEAE6C59C3A6306A
Key Value
FileSize86588
MD5A9613FD716B491C81DE9611AB7BCC475
PackageDescriptionPostgreSQL foreign data wrapper for OGR OGR is the vector half of the GDAL spatial data access library. It allows access to a large number of GIS data formats using a simple C API for data reading and writing. Since OGR exposes a simple table structure and PostgreSQL foreign data wrappers allow access to table structures, the fit seems pretty perfect. . This implementation currently has the following limitations: * Only non-spatial query restrictions are pushed down to the OGR driver. PostgreSQL foreign data wrappers support delegating portions of the SQL query to the underlying data source, in this case OGR. This implementation currently pushes down only non-spatial query restrictions, and only for the small subset of comparison operators (>, <, <=, >=, =) supported by OGR. * Spatial restrictions are not pushed down. OGR can handle basic bounding box restrictions and even (for some drivers) more explicit intersection restrictions, but those are not passed to the OGR driver yet. * OGR connections every time Rather than pooling OGR connections, each query makes (and disposes of) two new ones, which seems to be the largest performance drag at the moment for restricted (small) queries. * All columns are retrieved every time. PostgreSQL foreign data wrappers don't require all columns all the time, and some efficiencies can be gained by only requesting the columns needed to fulfill a query. This would be a minimal efficiency improvement, but can be removed given some development time, since the OGR API supports returning a subset of columns.
PackageMaintainerDebian GIS Project <pkg-grass-devel@lists.alioth.debian.org>
PackageNamepostgresql-11-ogr-fdw
PackageSectiondatabase
PackageVersion1.0.7-2
SHA-146B322827159607315B0B16F0812D44C5D11A461
SHA-256F4F64D739F93BF8D4875E7BBAE6F113243DA9E170832E312CED7EC4C35E018AB
Key Value
FileSize85680
MD59B4F42CAEE9BE4F74CBB2125A35823A5
PackageDescriptionPostgreSQL foreign data wrapper for OGR OGR is the vector half of the GDAL spatial data access library. It allows access to a large number of GIS data formats using a simple C API for data reading and writing. Since OGR exposes a simple table structure and PostgreSQL foreign data wrappers allow access to table structures, the fit seems pretty perfect. . This implementation currently has the following limitations: * Only non-spatial query restrictions are pushed down to the OGR driver. PostgreSQL foreign data wrappers support delegating portions of the SQL query to the underlying data source, in this case OGR. This implementation currently pushes down only non-spatial query restrictions, and only for the small subset of comparison operators (>, <, <=, >=, =) supported by OGR. * Spatial restrictions are not pushed down. OGR can handle basic bounding box restrictions and even (for some drivers) more explicit intersection restrictions, but those are not passed to the OGR driver yet. * OGR connections every time Rather than pooling OGR connections, each query makes (and disposes of) two new ones, which seems to be the largest performance drag at the moment for restricted (small) queries. * All columns are retrieved every time. PostgreSQL foreign data wrappers don't require all columns all the time, and some efficiencies can be gained by only requesting the columns needed to fulfill a query. This would be a minimal efficiency improvement, but can be removed given some development time, since the OGR API supports returning a subset of columns.
PackageMaintainerDebian GIS Project <pkg-grass-devel@lists.alioth.debian.org>
PackageNamepostgresql-11-ogr-fdw
PackageSectiondatabase
PackageVersion1.0.7-2
SHA-19289D065CF84E9586F8845D1C752920B9C31575A
SHA-256787D5484CD9D30C9E463D6B80E509724F645362DD2ECC73CB002493974519297
Key Value
FileSize82900
MD578A731A901D085BC9021C3EE14A497E0
PackageDescriptionPostgreSQL foreign data wrapper for OGR OGR is the vector half of the GDAL spatial data access library. It allows access to a large number of GIS data formats using a simple C API for data reading and writing. Since OGR exposes a simple table structure and PostgreSQL foreign data wrappers allow access to table structures, the fit seems pretty perfect. . This implementation currently has the following limitations: * Only non-spatial query restrictions are pushed down to the OGR driver. PostgreSQL foreign data wrappers support delegating portions of the SQL query to the underlying data source, in this case OGR. This implementation currently pushes down only non-spatial query restrictions, and only for the small subset of comparison operators (>, <, <=, >=, =) supported by OGR. * Spatial restrictions are not pushed down. OGR can handle basic bounding box restrictions and even (for some drivers) more explicit intersection restrictions, but those are not passed to the OGR driver yet. * OGR connections every time Rather than pooling OGR connections, each query makes (and disposes of) two new ones, which seems to be the largest performance drag at the moment for restricted (small) queries. * All columns are retrieved every time. PostgreSQL foreign data wrappers don't require all columns all the time, and some efficiencies can be gained by only requesting the columns needed to fulfill a query. This would be a minimal efficiency improvement, but can be removed given some development time, since the OGR API supports returning a subset of columns.
PackageMaintainerDebian GIS Project <pkg-grass-devel@lists.alioth.debian.org>
PackageNamepostgresql-11-ogr-fdw
PackageSectiondatabase
PackageVersion1.0.7-2
SHA-1644A84D9355DC8B942EA0A5CD83B1A14C6BA82D6
SHA-256EAD186296D9314F9F4CA597ECB13A31F34C84066AAF42CDBD9749BEB9A5D99F0
Key Value
FileSize82588
MD5B1969EECFD528D33FAC064119750FE0C
PackageDescriptionPostgreSQL foreign data wrapper for OGR OGR is the vector half of the GDAL spatial data access library. It allows access to a large number of GIS data formats using a simple C API for data reading and writing. Since OGR exposes a simple table structure and PostgreSQL foreign data wrappers allow access to table structures, the fit seems pretty perfect. . This implementation currently has the following limitations: * Only non-spatial query restrictions are pushed down to the OGR driver. PostgreSQL foreign data wrappers support delegating portions of the SQL query to the underlying data source, in this case OGR. This implementation currently pushes down only non-spatial query restrictions, and only for the small subset of comparison operators (>, <, <=, >=, =) supported by OGR. * Spatial restrictions are not pushed down. OGR can handle basic bounding box restrictions and even (for some drivers) more explicit intersection restrictions, but those are not passed to the OGR driver yet. * OGR connections every time Rather than pooling OGR connections, each query makes (and disposes of) two new ones, which seems to be the largest performance drag at the moment for restricted (small) queries. * All columns are retrieved every time. PostgreSQL foreign data wrappers don't require all columns all the time, and some efficiencies can be gained by only requesting the columns needed to fulfill a query. This would be a minimal efficiency improvement, but can be removed given some development time, since the OGR API supports returning a subset of columns.
PackageMaintainerDebian GIS Project <pkg-grass-devel@lists.alioth.debian.org>
PackageNamepostgresql-11-ogr-fdw
PackageSectiondatabase
PackageVersion1.0.7-2
SHA-184B6370D9F195DC721A26836A2A813633C831D5A
SHA-256A37738E6B1441EC2D1AAF5E57283BD567B115481CB3240E89C7989354B6CA2B5
Key Value
FileSize81936
MD58C49421B0331EEC55DF1B9CA11ED17DC
PackageDescriptionPostgreSQL foreign data wrapper for OGR OGR is the vector half of the GDAL spatial data access library. It allows access to a large number of GIS data formats using a simple C API for data reading and writing. Since OGR exposes a simple table structure and PostgreSQL foreign data wrappers allow access to table structures, the fit seems pretty perfect. . This implementation currently has the following limitations: * Only non-spatial query restrictions are pushed down to the OGR driver. PostgreSQL foreign data wrappers support delegating portions of the SQL query to the underlying data source, in this case OGR. This implementation currently pushes down only non-spatial query restrictions, and only for the small subset of comparison operators (>, <, <=, >=, =) supported by OGR. * Spatial restrictions are not pushed down. OGR can handle basic bounding box restrictions and even (for some drivers) more explicit intersection restrictions, but those are not passed to the OGR driver yet. * OGR connections every time Rather than pooling OGR connections, each query makes (and disposes of) two new ones, which seems to be the largest performance drag at the moment for restricted (small) queries. * All columns are retrieved every time. PostgreSQL foreign data wrappers don't require all columns all the time, and some efficiencies can be gained by only requesting the columns needed to fulfill a query. This would be a minimal efficiency improvement, but can be removed given some development time, since the OGR API supports returning a subset of columns.
PackageMaintainerDebian GIS Project <pkg-grass-devel@lists.alioth.debian.org>
PackageNamepostgresql-11-ogr-fdw
PackageSectiondatabase
PackageVersion1.0.7-2
SHA-122D876EAD482095DE4531A8FAB118F8F5CF1D72B
SHA-25643F4B4155C9137AADE24895B72B2C5E3032588B970EC6AAB2068A231798BCDEE