Result for BED00190CBA2523AD7BC6D200525DA98320F7B83

Query result

Key Value
FileName./usr/share/doc/libsuperlu-dist6/changelog.Debian.gz
FileSize2176
MD528A698DECE023F6EA58E13D531AB5512
SHA-1BED00190CBA2523AD7BC6D200525DA98320F7B83
SHA-2569FB0BA4E55A0C60E8F537BB3E86971A449260E99DF5F9B5D968450E8E3E4A8A4
SSDEEP48:XzjCSaKlViupsrQp31qI/1wmqn+2hxg64cUlc3AOgnXfl:S7uppp3UIdk+OHUlcwOgt
TLSHT1EB411A1A1ACF91F6027D86A140FE29F95E77B22554CA3238055A8ED0372E6404DA2369
hashlookup:parent-total20
hashlookup:trust100

Network graph view

Parents (Total: 20)

The searched file hash is included in 20 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize245864
MD5208C924DAEB4BCF68CD05E2159937759
PackageDescriptionHighly distributed solution of sparse linear equations SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations. The library is written in C and is callable from either C or Fortran program. It uses MPI, OpenMP and CUDA to support various forms of parallelism. It supports both real and complex datatypes, both single and double precision, and 64-bit integer indexing. The library routines performs an LU decomposition with partial pivoting and triangular system solves through forward and back substitution. The LU factorization routines can handle non-square matrices but the triangular solves are performed only for square matrices. The matrix columns may be preordered (before factorization) either through library or user supplied routines. This preordering for sparsity is completely separate from the factorization. Working precision iterative refinement subroutines are provided for improved backward stability. Routines are also provided to equilibrate the system, estimate the condition number, calculate the relative backward error, and estimate error bounds for the refined solutions. . SuperLU_DIST implements the algorithms for distributed memory, targetting highly parallel distributed memory hybrid systems. The numerical factorization routines are already implemented for hybrid systems with multiple GPUs. Further work will be needed to implement the other phases of the algorithms on the hybrid systems and to enhance strong scaling to extreme scale. . This package provides development files for building client applications against superlu-dist.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibsuperlu-dist-dev
PackageSectionlibdevel
PackageVersion6.1.1+dfsg1-1
SHA-11786C5D9F8DB3F7B675D75A3949854C6DBB3F86E
SHA-256541A6C20BDFF99D48B2B30124563E1E6D2358ACA7ADBF22A62A1D36C8800F152
Key Value
FileSize248948
MD58FE8A98301F2D5A99F0ABDF3F0671D71
PackageDescriptionHighly distributed solution of sparse linear equations SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations. The library is written in C and is callable from either C or Fortran program. It uses MPI, OpenMP and CUDA to support various forms of parallelism. It supports both real and complex datatypes, both single and double precision, and 64-bit integer indexing. The library routines performs an LU decomposition with partial pivoting and triangular system solves through forward and back substitution. The LU factorization routines can handle non-square matrices but the triangular solves are performed only for square matrices. The matrix columns may be preordered (before factorization) either through library or user supplied routines. This preordering for sparsity is completely separate from the factorization. Working precision iterative refinement subroutines are provided for improved backward stability. Routines are also provided to equilibrate the system, estimate the condition number, calculate the relative backward error, and estimate error bounds for the refined solutions. . SuperLU_DIST implements the algorithms for distributed memory, targetting highly parallel distributed memory hybrid systems. The numerical factorization routines are already implemented for hybrid systems with multiple GPUs. Further work will be needed to implement the other phases of the algorithms on the hybrid systems and to enhance strong scaling to extreme scale. . This package provides development files for building client applications against superlu-dist.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibsuperlu-dist-dev
PackageSectionlibdevel
PackageVersion6.1.1+dfsg1-1
SHA-119DC65BA7910C435D93C710B31D2F6EA45315CA6
SHA-256FCBC142C02D75319054B013033F81C2FCE6C990B13940E8589AF9BEFF4B50B65
Key Value
FileSize330816
MD5B9E107EB466857CCF5B1BD997BEF41D4
PackageDescriptionHighly distributed solution of sparse linear equations SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations. The library is written in C and is callable from either C or Fortran program. It uses MPI, OpenMP and CUDA to support various forms of parallelism. It supports both real and complex datatypes, both single and double precision, and 64-bit integer indexing. The library routines performs an LU decomposition with partial pivoting and triangular system solves through forward and back substitution. The LU factorization routines can handle non-square matrices but the triangular solves are performed only for square matrices. The matrix columns may be preordered (before factorization) either through library or user supplied routines. This preordering for sparsity is completely separate from the factorization. Working precision iterative refinement subroutines are provided for improved backward stability. Routines are also provided to equilibrate the system, estimate the condition number, calculate the relative backward error, and estimate error bounds for the refined solutions. . SuperLU_DIST implements the algorithms for distributed memory, targetting highly parallel distributed memory hybrid systems. The numerical factorization routines are already implemented for hybrid systems with multiple GPUs. Further work will be needed to implement the other phases of the algorithms on the hybrid systems and to enhance strong scaling to extreme scale. . This package provides the superlu-dist shared library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibsuperlu-dist6
PackageSectionlibs
PackageVersion6.1.1+dfsg1-1
SHA-12C642A3A1C8EEC2A3DBF92E816A73C84F3E52050
SHA-2560A049F43230A38A9F2D813B47BEB3E65F0900AF5246ADAAC4FA49DFE335AFDBD
Key Value
FileSize332152
MD5BA4F2E4462D3CA822F77CE34A13AAECB
PackageDescriptionHighly distributed solution of sparse linear equations SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations. The library is written in C and is callable from either C or Fortran program. It uses MPI, OpenMP and CUDA to support various forms of parallelism. It supports both real and complex datatypes, both single and double precision, and 64-bit integer indexing. The library routines performs an LU decomposition with partial pivoting and triangular system solves through forward and back substitution. The LU factorization routines can handle non-square matrices but the triangular solves are performed only for square matrices. The matrix columns may be preordered (before factorization) either through library or user supplied routines. This preordering for sparsity is completely separate from the factorization. Working precision iterative refinement subroutines are provided for improved backward stability. Routines are also provided to equilibrate the system, estimate the condition number, calculate the relative backward error, and estimate error bounds for the refined solutions. . SuperLU_DIST implements the algorithms for distributed memory, targetting highly parallel distributed memory hybrid systems. The numerical factorization routines are already implemented for hybrid systems with multiple GPUs. Further work will be needed to implement the other phases of the algorithms on the hybrid systems and to enhance strong scaling to extreme scale. . This package provides the superlu-dist shared library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibsuperlu-dist6
PackageSectionlibs
PackageVersion6.1.1+dfsg1-1
SHA-15A56BF7EC7000F5C1827F31AC18B63BF61504FE9
SHA-256FE2E24B7A45C6B8202763018730CE71902E8C86951C2C2B3F545E5FD3F2669A0
Key Value
FileSize252744
MD59E1E8BC41E239624EF2E405F33B6A0E6
PackageDescriptionHighly distributed solution of sparse linear equations SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations. The library is written in C and is callable from either C or Fortran program. It uses MPI, OpenMP and CUDA to support various forms of parallelism. It supports both real and complex datatypes, both single and double precision, and 64-bit integer indexing. The library routines performs an LU decomposition with partial pivoting and triangular system solves through forward and back substitution. The LU factorization routines can handle non-square matrices but the triangular solves are performed only for square matrices. The matrix columns may be preordered (before factorization) either through library or user supplied routines. This preordering for sparsity is completely separate from the factorization. Working precision iterative refinement subroutines are provided for improved backward stability. Routines are also provided to equilibrate the system, estimate the condition number, calculate the relative backward error, and estimate error bounds for the refined solutions. . SuperLU_DIST implements the algorithms for distributed memory, targetting highly parallel distributed memory hybrid systems. The numerical factorization routines are already implemented for hybrid systems with multiple GPUs. Further work will be needed to implement the other phases of the algorithms on the hybrid systems and to enhance strong scaling to extreme scale. . This package provides development files for building client applications against superlu-dist.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibsuperlu-dist-dev
PackageSectionlibdevel
PackageVersion6.1.1+dfsg1-1
SHA-15E1FD06D9C138065456BD7EFD34404002EBBA804
SHA-2565D37CFEB93D1A37C71F7EA33F757FDD62EFD28003B7D589E5617B5D72CB10861
Key Value
FileSize404920
MD577712A07E81AB81027F06707059AEBE7
PackageDescriptionHighly distributed solution of sparse linear equations SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations. The library is written in C and is callable from either C or Fortran program. It uses MPI, OpenMP and CUDA to support various forms of parallelism. It supports both real and complex datatypes, both single and double precision, and 64-bit integer indexing. The library routines performs an LU decomposition with partial pivoting and triangular system solves through forward and back substitution. The LU factorization routines can handle non-square matrices but the triangular solves are performed only for square matrices. The matrix columns may be preordered (before factorization) either through library or user supplied routines. This preordering for sparsity is completely separate from the factorization. Working precision iterative refinement subroutines are provided for improved backward stability. Routines are also provided to equilibrate the system, estimate the condition number, calculate the relative backward error, and estimate error bounds for the refined solutions. . SuperLU_DIST implements the algorithms for distributed memory, targetting highly parallel distributed memory hybrid systems. The numerical factorization routines are already implemented for hybrid systems with multiple GPUs. Further work will be needed to implement the other phases of the algorithms on the hybrid systems and to enhance strong scaling to extreme scale. . This package provides the superlu-dist shared library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibsuperlu-dist6
PackageSectionlibs
PackageVersion6.1.1+dfsg1-1
SHA-15E46968E0E9C6317843B4B25D9E040DA10F26CD5
SHA-256D4A59EB6CBBBAD07D0FD881A0ECF9F032DE9ECBDB762609D85A21C233E23AF93
Key Value
FileSize248940
MD5839C9FAE3CE5E5A3D4454F9B2C452875
PackageDescriptionHighly distributed solution of sparse linear equations SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations. The library is written in C and is callable from either C or Fortran program. It uses MPI, OpenMP and CUDA to support various forms of parallelism. It supports both real and complex datatypes, both single and double precision, and 64-bit integer indexing. The library routines performs an LU decomposition with partial pivoting and triangular system solves through forward and back substitution. The LU factorization routines can handle non-square matrices but the triangular solves are performed only for square matrices. The matrix columns may be preordered (before factorization) either through library or user supplied routines. This preordering for sparsity is completely separate from the factorization. Working precision iterative refinement subroutines are provided for improved backward stability. Routines are also provided to equilibrate the system, estimate the condition number, calculate the relative backward error, and estimate error bounds for the refined solutions. . SuperLU_DIST implements the algorithms for distributed memory, targetting highly parallel distributed memory hybrid systems. The numerical factorization routines are already implemented for hybrid systems with multiple GPUs. Further work will be needed to implement the other phases of the algorithms on the hybrid systems and to enhance strong scaling to extreme scale. . This package provides development files for building client applications against superlu-dist.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibsuperlu-dist-dev
PackageSectionlibdevel
PackageVersion6.1.1+dfsg1-1
SHA-171A057C3BC5441F6EB2BE565B2A94A5251CF0B10
SHA-256D13274115A6C81273CBD1EF58EFD495108F981FEDD50695848FD8DDB0F576B8A
Key Value
FileSize336732
MD54C92F5A66CFAAD023EC4809FF7EDACD9
PackageDescriptionHighly distributed solution of sparse linear equations SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations. The library is written in C and is callable from either C or Fortran program. It uses MPI, OpenMP and CUDA to support various forms of parallelism. It supports both real and complex datatypes, both single and double precision, and 64-bit integer indexing. The library routines performs an LU decomposition with partial pivoting and triangular system solves through forward and back substitution. The LU factorization routines can handle non-square matrices but the triangular solves are performed only for square matrices. The matrix columns may be preordered (before factorization) either through library or user supplied routines. This preordering for sparsity is completely separate from the factorization. Working precision iterative refinement subroutines are provided for improved backward stability. Routines are also provided to equilibrate the system, estimate the condition number, calculate the relative backward error, and estimate error bounds for the refined solutions. . SuperLU_DIST implements the algorithms for distributed memory, targetting highly parallel distributed memory hybrid systems. The numerical factorization routines are already implemented for hybrid systems with multiple GPUs. Further work will be needed to implement the other phases of the algorithms on the hybrid systems and to enhance strong scaling to extreme scale. . This package provides the superlu-dist shared library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibsuperlu-dist6
PackageSectionlibs
PackageVersion6.1.1+dfsg1-1
SHA-17E60C8E5EDF4B6478704EE5E1D32813E7D62AAF4
SHA-2569E686860E223C0CA78CF834EE4E2D2AEC24A4D4A14950F906402815A1B48F4FC
Key Value
FileSize248452
MD514EDC01224816DFAAB03981511220CC6
PackageDescriptionHighly distributed solution of sparse linear equations SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations. The library is written in C and is callable from either C or Fortran program. It uses MPI, OpenMP and CUDA to support various forms of parallelism. It supports both real and complex datatypes, both single and double precision, and 64-bit integer indexing. The library routines performs an LU decomposition with partial pivoting and triangular system solves through forward and back substitution. The LU factorization routines can handle non-square matrices but the triangular solves are performed only for square matrices. The matrix columns may be preordered (before factorization) either through library or user supplied routines. This preordering for sparsity is completely separate from the factorization. Working precision iterative refinement subroutines are provided for improved backward stability. Routines are also provided to equilibrate the system, estimate the condition number, calculate the relative backward error, and estimate error bounds for the refined solutions. . SuperLU_DIST implements the algorithms for distributed memory, targetting highly parallel distributed memory hybrid systems. The numerical factorization routines are already implemented for hybrid systems with multiple GPUs. Further work will be needed to implement the other phases of the algorithms on the hybrid systems and to enhance strong scaling to extreme scale. . This package provides development files for building client applications against superlu-dist.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibsuperlu-dist-dev
PackageSectionlibdevel
PackageVersion6.1.1+dfsg1-1
SHA-188BFA5F6E6E11430E8312138E8457389FEAC4A36
SHA-2563115B8D40B9F6D1AEA109D55747BCFA22749DCD1825D263BE01D7F85D40179E8
Key Value
FileSize251388
MD52B24BF6A1E58D7F4860C093564624853
PackageDescriptionHighly distributed solution of sparse linear equations SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations. The library is written in C and is callable from either C or Fortran program. It uses MPI, OpenMP and CUDA to support various forms of parallelism. It supports both real and complex datatypes, both single and double precision, and 64-bit integer indexing. The library routines performs an LU decomposition with partial pivoting and triangular system solves through forward and back substitution. The LU factorization routines can handle non-square matrices but the triangular solves are performed only for square matrices. The matrix columns may be preordered (before factorization) either through library or user supplied routines. This preordering for sparsity is completely separate from the factorization. Working precision iterative refinement subroutines are provided for improved backward stability. Routines are also provided to equilibrate the system, estimate the condition number, calculate the relative backward error, and estimate error bounds for the refined solutions. . SuperLU_DIST implements the algorithms for distributed memory, targetting highly parallel distributed memory hybrid systems. The numerical factorization routines are already implemented for hybrid systems with multiple GPUs. Further work will be needed to implement the other phases of the algorithms on the hybrid systems and to enhance strong scaling to extreme scale. . This package provides development files for building client applications against superlu-dist.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibsuperlu-dist-dev
PackageSectionlibdevel
PackageVersion6.1.1+dfsg1-1
SHA-193E9549FFB08998DC906363B4F5A04FC2E2BDD21
SHA-256FFB5D0D591D674CF392074AB146AA4A74A7C1E3740CF51294ECA92E45210B324