Key | Value |
---|---|
MD5 | AF212728AA9596C28F3C2AAC0BA53DDE |
PackageArch | armv7hl |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python3-scikit-learn |
PackageRelease | 2.fc34 |
PackageVersion | 0.24.0 |
SHA-1 | B853847F69F1F910C657394D51431E5B69DE012A |
SHA-256 | 65468DDB69060B410A6078F4972495F2D13C1053EFC9A327818EC723D44F13D1 |
hashlookup:children-total | 1683 |
hashlookup:trust | 50 |
The searched file hash includes 1683 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib/python3.9/site-packages/sklearn/semi_supervised/__pycache__/_label_propagation.cpython-39.pyc |
FileSize | 16911 |
MD5 | 6614DD8D87DFF4DF46D6B8C77E41D183 |
SHA-1 | 00156891E5897457451488BF2C3D0D47F989E45F |
SHA-256 | 6068AA4D6A21731297639EAC823D709C056B8801CB5EED99F0107F6FC9F1A1B1 |
SSDEEP | 384:UTT+D+V0xI0068oJB4BKiiwxaISGqI6O3i2gT:8V0xI0P8YuKrZGqQgT |
TLSH | T1C1721956BE802A3AFED3F2F394FD0106DA74852B5381602474DE6B191F0446A777E76C |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/svm/plot_svm_margin.py |
FileSize | 2540 |
MD5 | 20F0800268AA3B127A61866BEB151FF0 |
SHA-1 | 001C2B7EF85E6BFACF735090F2C5E656263B182A |
SHA-256 | 800978E1EF0A17DAE6DEA3ECAB717245DEA9CDBA8F649D4E4A2877352DB3E680 |
SSDEEP | 48:CdEGkJVbTOXwNUh6EPXu6HSghmkhslNMftKVGbioWGF:CvQcX186HIkh6Sms |
TLSH | T140517401364C73B09B4381983DE7ADB57761A17F5D80282FB1AD6244CF18BAAD739D8A |
Key | Value |
---|---|
FileName | ./usr/lib/python3.9/site-packages/sklearn/impute/__pycache__/_base.cpython-39.pyc |
FileSize | 23533 |
MD5 | 83EFD8F667C4F4792ACBD5F00BF1F348 |
SHA-1 | 0038E7BFF2ED889423C0ED8856A5034425A9DD28 |
SHA-256 | 12C41DB1A011EA3C6E9C61A3328086474FBE3F555799D7A6C6BB3C653032D3CE |
SSDEEP | 384:mNi4T0JDxPhwTtDUWXQ5BVY4iaxLFJEQOQX3zV+mEmq7mn9mFmOWfUWMm+F3OIfb:mk80JDxSTtIeITRiQr5zX3zVz9qKIA6N |
TLSH | T1B9B2C47E3D010B2BFD53F1F164E903898F14917B538609EA38EDD0992F899A8163CB9D |
Key | Value |
---|---|
FileName | ./usr/lib/python3.9/site-packages/sklearn/_build_utils/__pycache__/__init__.cpython-39.pyc |
FileSize | 2195 |
MD5 | 1A3DC841D01BDC2F78877D6067BE383D |
SHA-1 | 00447DC944882A89E0D2BB53DCE1D82140EA3629 |
SHA-256 | B0F2825D09C11D812EFD7331474A40F6707EE03DBE27435EA2938905B9DFCDF8 |
SSDEEP | 48:Q7CVlJ5o/LFm85wgXrvImatXflh61hgp3D1V/galf5y3n30aXf:6aJi/Lrw00malp/gE5y330a |
TLSH | T14C41F8D44112E732FCBCB3FC90A8073276F0D3700B891059059499968F93AE44A7338A |
Key | Value |
---|---|
FileName | ./usr/share/doc/python3-scikit-learn/examples/model_selection/plot_multi_metric_evaluation.py |
FileSize | 3608 |
MD5 | 3366E47F0F923244172F58BDAAE55628 |
SHA-1 | 0067E464C1876018576BBD61309BCD15147A3875 |
SHA-256 | 5AF5A1CFB29AC6452A1C852DA694EB618892A6A559479268647DCBDD6FE67CF3 |
SSDEEP | 96:Vw6SQe99hjxUv3/MXxQC1/94cQX/5PwXQQl5yMUYa:rS5qZPiQSXUYa |
TLSH | T15B71460ADD372B520736D0E4BCE8AA91E392413D5E189164FD0E5A6D0B4AB75333C69D |
Key | Value |
---|---|
FileName | usr/lib/python3.9/site-packages/sklearn/ensemble/tests/test_gradient_boosting.py |
FileSize | 50776 |
MD5 | 379D58F4A018A19CBA3218D75F753F03 |
SHA-1 | 00904C30AF7640968F15780F52FBABF0E1B129F9 |
SHA-256 | 3481482D9003787BDE5E87D78A6B209B784C407188E4C851060F575A61DC1D21 |
SSDEEP | 1536:J59QMpd6DG9sksPNh+JQb3FYqHlK0yQP1FhpVzdt1XzdtVTrbkvYvDgc3a:J59QMp4DG9sksPNh+JQb3FvDhLdt1XzK |
TLSH | T115337505E063496BAF6374B7A9ED451C3B85992B484044BAB6BEC4102FA857C337B7FC |
tar:gname | root |
tar:uname | root |
Key | Value |
---|---|
FileName | ./usr/lib/python3.9/site-packages/sklearn/tests/__pycache__/test_check_build.cpython-39.pyc |
FileSize | 483 |
MD5 | 283D67A7E6BE0F6848824FD64BE3646D |
SHA-1 | 012E366DE96FB33179BF859F5FBD92D193723BCB |
SHA-256 | DE3B77BE59B97A9AC9DB7B8E44C0A92C8E001E5A132C3DC17DA821259A69B7B0 |
SSDEEP | 12:QL+M0BLuc8VxlgkwRv8G5gW2/bTEE0CotwdJpqlwMm:QqEc8VxlTiv75gTEE3pdJp0wl |
TLSH | T15BF0236185852F23F129EE7784302376B0F1867377ECE4611B8C69776F02F408CA3088 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.6/site-packages/sklearn/metrics/_scorer.py |
FileSize | 29542 |
MD5 | 7ABED31C3417A48FA04A582EB5C70DB9 |
SHA-1 | 018E9A63536A94CB83BDB656C08B934C81706FB5 |
SHA-256 | 8F37B7F3B8DA7123E4A98B2E1DA0D724580DCC50F279D05BD2498A751B565C7C |
SSDEEP | 384:BYHQGSfLlfqwn2awXoHh0fbNJO67zvwKcrspxd5dAKTgWP:BvGSfLlfqa2a6wQzOyzvwbASE |
TLSH | T122D2A428F91B66218B27D8BDB8DBD056A3059D374A502824FCDDC63C1F0599E83F9ADC |
tar:gname | root |
tar:uname | root |
Key | Value |
---|---|
FileName | snap-hashlookup-import/lib/python3.8/site-packages/sklearn/decomposition/__init__.py |
FileSize | 1396 |
MD5 | 498D4B8239A30411065868D30935986B |
SHA-1 | 01946AAA0E97A082A9445AA079C59C0ED5140C7C |
SHA-256 | 8365BE5E34C13D549444C970F979453F2714874E95F94234B1D22BDE9523EFAC |
SHA-512 | 51E553F5F8912C3462A6AD1FCEA8C9931ED0676A156B415FBD8A10764392FA3CDAF39753B69500136ADE3B4C22ED68F985D29A915B882F55684CA2486AE6CC15 |
SSDEEP | 24:at5S5HCiMesHVQB4aZaEQFuMWgmWNtoNtpfcYfp:arWHJMeXDwEQFDW5NJfc0p |
TLSH | T1EB21487AA4173658007EA8A78E598169193221E35F432484B85E46B92FEFE5C4633B36 |
insert-timestamp | 1662080049.1152234 |
mimetype | text/plain |
source | snap:43LOJ1RcqawGIwV10Xk4HzV76JkxgFo2_175 |
tar:gname | root |
tar:uname | root |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/applications/plot_face_recognition.py |
FileSize | 5673 |
MD5 | E04463D133077965B621853B417E3976 |
SHA-1 | 01A05E69B658947C8718FF96E63992BD7120AFD8 |
SHA-256 | 95EF36678B93D317074819E512B6EB9FD41AD6CF42BE577F6C95F233494D0C95 |
SSDEEP | 96:/WrdZDdY/G+XcXjnW+eV4fcQAY8vxucweFmVFG6kgIOrzTmd1ljF9bw2sbwnHqlN:erbzeV4fcTY2IcxidksKR93sRlZ5Ey |
TLSH | T128C1B57A7A6B3B71D3A760B9A9EC38B43720504E0DB30515338D42D00BB2F78676399A |