Result for B7BD17734CCF5522E53D36F36B6BEDBB795D24B9

Query result

Key Value
FileName./usr/share/doc/shogun-cmdline-static/changelog.Debian.armhf.gz
FileSize221
MD5EDBCD301EB2A6B05CA5EC5AA3A794985
SHA-1B7BD17734CCF5522E53D36F36B6BEDBB795D24B9
SHA-256019953D7EA069353EB34BE28E1CFA61CD2DDB1B5135E45BAB4B116272E93723A
SSDEEP6:XtPeckdCi+3Wruie6QQ6tWxHfgobQ6zeaDxrOCwh:XJecIC53W60ayHftbLhOCwh
TLSHT134D023F867D57C56F1DD213145831CDEF31C149814C48FD601040C5014DF6495DD9CDC
hashlookup:parent-total4
hashlookup:trust70

Network graph view

Parents (Total: 4)

The searched file hash is included in 4 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize3485632
MD5CEDA436D1EC0D7A80FF2BDCE08866790
PackageDescriptionLarge Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This is the core library with the machine learning methods and ui helpers all interfaces are based on.
PackageMaintainerDebian QA Group <packages@qa.debian.org>
PackageNamelibshogun16
PackageSectionlibs
PackageVersion3.2.0-8+b1
SHA-10526A484348B169E2AEA17BE319CD46885EE3B6F
SHA-256ECA9FC936BBF9C65BF0A8502FCDAA3FA4B0E350510C1646F6DD8C557B3A77496
Key Value
FileSize1531644
MD5235F38ED97FDA440A4733541B6DC929D
PackageDescriptionLarge Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This package includes the developer files required to create stand-a-lone executables.
PackageMaintainerDebian QA Group <packages@qa.debian.org>
PackageNamelibshogun-dev
PackageSectionlibdevel
PackageVersion3.2.0-8+b1
SHA-19B00F4E150CB6B8508300505612A735E98996C30
SHA-256608DC6570D96FA8986476351BEB461AD2BD2D8DAA88E326242029D7BCE98B7DE
Key Value
FileSize68080304
MD58BD3ED6958016A573E3EE38339099D4D
PackageDescriptionLarge Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This package contains debug symbols for all interfaces.
PackageMaintainerDebian QA Group <packages@qa.debian.org>
PackageNamelibshogun-dbg
PackageSectiondebug
PackageVersion3.2.0-8+b1
SHA-1CA8EEA065FD17F23263B1D00F1BB94F05E3F3509
SHA-256FDF7AB6919C7B50747D8F85D4EB6D7CC9E5F544562C0FDC484DB4A37907E6425
Key Value
FileSize959196
MD566561A955724DB46113B030E19A16F79
PackageDescriptionLarge Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This is the Readline package.
PackageMaintainerDebian QA Group <packages@qa.debian.org>
PackageNameshogun-cmdline-static
PackageSectionscience
PackageVersion3.2.0-8+b1
SHA-19FFE568CAC0DF33585E3537214CA4D2EE036C705
SHA-25669B1C8C72B66605DE5BD39F742714F7CF1182829C6090B4B59613AE7B67A39ED