Result for B785A2CC156319AAE130CD04BC6040E3FE97C151

Query result

Key Value
FileName./usr/share/doc/libint1/changelog.Debian.gz
FileSize1146
MD516264AF4DFEC14F9D09A7507F5B2868D
SHA-1B785A2CC156319AAE130CD04BC6040E3FE97C151
SHA-256DBFF77DA836785AA7B6A2C951DB31BDB3C515D2B7D690F008D3934F869657CF3
SSDEEP24:XE8wus7Z1s3Ouy0fjPeuR5ONCi0vHdwswCzi8mHJ3sSBdP2u/:XE8V9JfyuRri0v9rwCmHHmSBdPJ/
TLSHT12821C60476A8951F8738D5DBC3C2F8890D64E3436E06970009C584D8BE7C68602B1BCE
hashlookup:parent-total22
hashlookup:trust100

Network graph view

Parents (Total: 22)

The searched file hash is included in 22 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize2336916
MD54D0C5C00AD64894338E9F1FEDC613DA9
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the shared library.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint1
PackageSectionlibs
PackageVersion1.2.1-2
SHA-1092FECCE931C36472E62201DECBD9A26EBC6EF03
SHA-2566191E86759AC30227CA2B23F634D0A68DE81387F11E8A2D49B4ADB31D18ECDC3
Key Value
FileSize4402076
MD50A99618B7E20B1669EAADA85614C2C59
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the shared library.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint1
PackageSectionlibs
PackageVersion1.2.1-2
SHA-12F4050F82664228D53C5B525B9A69E4712D73965
SHA-25688C9222024D90277F78B18B8F822566144EAB036AF0FAE8A66227AA65DBE21CB
Key Value
FileSize2792956
MD52A11DB7FC26668DA1FFE0613F397669E
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the shared library.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint1
PackageSectionlibs
PackageVersion1.2.1-2
SHA-1339872B059A7517257DAF9D92E831F11B9463AE4
SHA-256687C70B6BDCDC5CF5005A7DAF29F37DAFAE21C4D60337994C5A8D2C07CDB9351
Key Value
FileSize2671516
MD55F49A8469FC68703451224714AAFEA26
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the shared library.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint1
PackageSectionlibs
PackageVersion1.2.1-2
SHA-1592A77E236ED54BF6DD7C98DA70A0FA67DAB2DFF
SHA-256AE9C7D7ED36C6F92DCEB9027D03E97C0C26826EFF4D45384A2BFAEDB8351A4EC
Key Value
FileSize2398316
MD51B33E9F9E7146E96FF37A1FE5E2F2525
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the shared library.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint1
PackageSectionlibs
PackageVersion1.2.1-2
SHA-161C7DBC3AA733C5E74CE7423F14B406AE840CB56
SHA-25625F05C7C578DD3E56A01099FA8AACD0A6C5B88D39F04B1317F2034220F134B2C
Key Value
FileSize2634492
MD56DDC15323AAAA337D2E27993EDEFCBCE
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the shared library.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint1
PackageSectionlibs
PackageVersion1.2.1-2
SHA-1658E74A6D501DB755C134F806B84B52820E3EF8F
SHA-256E106C3D612D2D38E27C9FA7B6C41425D14A5C2B9D88782AF7586AF0167F1ADFF
Key Value
FileSize3057892
MD54BE40EEACBB03C68BF27123FE609B2B5
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.2.1-2
SHA-1742314951676EC70A0A31A2F772A6BCC64793C73
SHA-256DAA59E0688F63F83169A044FD229A0C9E2EBEB62BB82F8EC06B719BC28F10876
Key Value
FileSize2586992
MD52F40B5BDC2F8DFBFDD9DAC0A2144BB67
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.2.1-2
SHA-1743556AB807D44A2D2939C761D81D762FA8DFF81
SHA-256370D3CAE69C07F3E6B0ED8D7C31BE2FA7D5C55902A7098D5F407E3C774EBAC62
Key Value
FileSize2732856
MD5FC22B4E83CDFABD9DB3B512BE7EC988D
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the shared library.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint1
PackageSectionlibs
PackageVersion1.2.1-2
SHA-18C2B750B9A6054E6B8DA382272270699ACC978D4
SHA-256D7100079DB6B4AB15D95879FB8FD16F2512FD993B9AF0E1A8C4695E07C1F84B5
Key Value
FileSize2795024
MD5D4095671C107F8EA87DF19AC12C31C8B
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the shared library.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamelibint1
PackageSectionlibs
PackageVersion1.2.1-2
SHA-19112A2EEB3763D6A8C52B67CB465DC9802657E7F
SHA-256B3138C50EC3AFA9DC81587E87C196C6E32EB869629B101975D2DE894A99B5807