Key | Value |
---|---|
FileSize | 1062440 |
MD5 | 23EE5498BBB00B836401F817D39E515F |
PackageDescription | Data structures, algorithms, educational resources for bioinformatics (docs) Scikit-bio is a Python package providing data structures, algorithms, and educational resources for bioinformatics. . This is the HTML documentation for skbio. |
PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
PackageName | python-skbio-doc |
PackageSection | doc |
PackageVersion | 0.5.6-2 |
SHA-1 | B54487EF51F54C24A654A6E2B20A487964197500 |
SHA-256 | AAE105446AFC152CE3B4AFEBD56A4CD88D9FF70166B79B05F2602507B84D4899 |
hashlookup:children-total | 1756 |
hashlookup:trust | 50 |
The searched file hash includes 1756 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/share/doc/python-skbio-doc/html/_sources/generated/skbio.sequence.Sequence.read.rst.txt |
FileSize | 134 |
MD5 | 5A12EC0FAFDC3475D3C2B31D0BEA97DA |
SHA-1 | 0005D949A433B83B625DFA09FF5299CAE7D990FB |
SHA-256 | 7F3C746334CEF53476112AFC2CBC128433EDAB8B69AAFD62C021068E1861A31F |
SSDEEP | 3:lNsKNudq1Y1a6BFsKuLLFEEKzTWuLn:l9401Y1NMLLFEEQ6uLn |
TLSH | T1EDC0928F103E1B5AC02C9704778426F6B83A708077EF83102D3457428848BA09872960 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-skbio-doc/html/_sources/generated/skbio.alignment.TabularMSA.read.rst.txt |
FileSize | 143 |
MD5 | 79598B7D72F0FA46D12D8D3719378E46 |
SHA-1 | 001738F762E5DDA8C38E5C0BFD407DDE398F92F8 |
SHA-256 | 70CB43330BBD6A894904212878EA8964047B3E37697071F0A2540EEFCB871618 |
SSDEEP | 3:lNsK8XIuRFk+v1Y1v6BFsvXIuRPJKzUhEX+vn:l9uIok+v1Y10CIcQUSX+vn |
TLSH | T18BC09202123D167D8568AA0447050FF8E8FA70C06FE1C11A3BA56B81815CBE66B92A40 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-skbio-doc/html/_sources/generated/skbio.stats.gradient.TrajectoryGradientANOVA.__gt__.rst.txt |
FileSize | 203 |
MD5 | FD23D006B5CC2332E19C2DAAC7922385 |
SHA-1 | 004824D5CD1DDBD9A91A42A9277BFDF2218D42B1 |
SHA-256 | 3AED876A8F1C77E3BB8A403A371A9B9D4E48D9497C04826A36361F72795E0056 |
SSDEEP | 3:lNsKX9YMnAVpI5pRfs6BFsW9YMaLLJKzUWj2pI5pRJ:l9tYMnAs/fnZYMaLdQUWjH/J |
TLSH | T128D08005001C1109FC27F780C5140CDC845E6DF95355C894097CC144C1717D535FCC20 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-skbio-doc/html/development/coding_guidelines.html |
FileSize | 49839 |
MD5 | 8E4127AE69735CB028175971061F50D8 |
SHA-1 | 00C1674C1DC92EDD4567BA2944A9246A99F84BE8 |
SHA-256 | 59F4585C26D4080E80DD457B14218E9F3FCC32ED7B2CA5F98890F40804EDC774 |
SSDEEP | 768:UBqbIxSpHq+n9xdUFTHvhMPFosX+iFvJPfs1FUjD7uaVp:ztnLqvqPFosXhFRPfTdp |
TLSH | T14E232FA2D9F282370137C0DAA7EE1B69F1E6402ED1910851E6FD477C879CE91741FE2A |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/horizon/xstatic/pkg/bootswatch/data/cerulean/bootstrap.min.css |
FileSize | 128257 |
MD5 | 4ABC771EC996323E38DD127400A9361A |
SHA-1 | 00D69D1B94DF6FB7248CC7E77A1B18F71D799CE9 |
SHA-256 | CA9B316A4AA635F54F257C0B25D5841CB12F0FC01F1498DB99B9B42FBAFE34A9 |
SHA-512 | DCD12C328A41CBC1370186587D61030FE9D1194A091DB09B74DA326F8B40DF1F47AEC8B1097FD3A3786F6E7D40275239001BBF2F4AB82AC54AC1B5F8BCFC2F75 |
SSDEEP | 768:pzkGxw/f/Hm3o8DnJgI6GHNSLLMl/GGlXMbZbVdGvP9P08Ef/VZAqQkQzaxv:p5w/nKSI6GHNSLLZG1AdjBf/V3Q4v |
TLSH | T168C3C660F11031EA7323C55A71D0FE8A3259E193E5664EB7F22F65E88F855CA0273F1A |
insert-timestamp | 1728970043.6881106 |
mimetype | text/plain |
source | snap:CRyc3PMhfCSITBgxznvDPPwK9acscVAh_9 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-skbio-doc/html/_sources/generated/skbio.tree.TreeNode.unrooted_copy.rst.txt |
FileSize | 149 |
MD5 | 234B925A23EA87C6C4EAB23748EDE99C |
SHA-1 | 00EEEFD3C0DF234438593F9BE0DB61E7BFE7C953 |
SHA-256 | 74A8B6B5B5E5D5256E4E2173F765FB7911399B689093731AC3252CB5F70552C5 |
SSDEEP | 3:lNsKzLxXlsjjZ6BFsI9EEKzUVsjje:l9zLxXls/ev9EEQUG/e |
TLSH | T1DBC09B5450350A5F917D5ECB590E57D45D5D7835F3535F2114185D8051543746CDE680 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-skbio-doc/html/_sources/generated/skbio.sequence.Protein.__deepcopy__.rst.txt |
FileSize | 155 |
MD5 | 7E4D01A2C716263AE5AEC7A8374D2D00 |
SHA-1 | 00F2F22F95E038F8C07D31594FE618C02CE0111E |
SHA-256 | B487954D47DFB4A0A2AD8871FB5EB939178FCF09A181A7F643CE53C06C4527EB |
SSDEEP | 3:lNsKNuQAv6nBcR656BFsKuLLFEEKzQaRpy6nBcRv:l94VinqR6+MLLFEEQQaRppnqRv |
TLSH | T18DC09B4D201D465E905E56E5675C49F9B475615573F743111CB442864988770BC74E50 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-skbio-doc/html/alignment.html |
FileSize | 29813 |
MD5 | 70420AD5C49F3D10AB5797DF1D7E8073 |
SHA-1 | 01097C6442EB6BAA55CBDE7B9AA6808D9A1AF578 |
SHA-256 | FF248ADC04407FA4FFEDF4E45024362BFA87D571D25216BA0D8FE0630D65966E |
SSDEEP | 768:jRY4q9WhiEIy8L4Fb+I5jmsrdf05yBaQN/h2pN2a31bGOFTNp:Jesf/ho1rFTNp |
TLSH | T105D2DCE299F381370177D0C742EA1B75B0E6502AE5E60441B2FD87BC47D8D927A0BE6E |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-skbio-doc/html/_sources/generated/skbio.alignment.TabularMSA.append.rst.txt |
FileSize | 149 |
MD5 | 79E77A74A491039F6EFAEB81592502CD |
SHA-1 | 0109C921374E593F7E68696D3C6FA6F70F43AD06 |
SHA-256 | 3D08DAD6CB56C0AB9811160260E57B41BDAE7F99D01EDD1A934574C27D130EFF |
SSDEEP | 3:lNsK8XIuRFk+8q10F6BFsvXIuRPJKzUhEX+8q1v:l9uIok+8q10SCIcQUSX+8q1v |
TLSH | T1B7C09202227A157DD5686E08C7051EF898FA60E063E1D12C3AA61F888158FE66B90A40 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-skbio-doc/html/_sources/generated/skbio.stats.gradient.FirstDifferenceGradientANOVA.get_trajectories.rst.txt |
FileSize | 248 |
MD5 | 0EDCB4641A9E3D6D1A64B44D8A38A87F |
SHA-1 | 0127CB9C74A779C6293332FFBB3623F13CF65C81 |
SHA-256 | F83241A1460B4067C42063F116A21DBE123748B6EAE47061B3F3297DBD3AB45A |
SSDEEP | 6:l9tYMGiDysFEPjMrZYMaLdQGMGiDysFEPjn:XeKy1PjM2dEGgy1Pjn |
TLSH | T102D0120580246287F93ADFC0DB0914AEB65761EB638D85581D5C810C806AFBA25AD923 |