Result for B3BD4B6FDBEE00EEB4BE7CF81BE0A35686659490

Query result

Key Value
FileSize1451824
MD5812AA62CA25CDD3AA99B589DA3107B12
PackageDescriptionPython package for convex optimization CVXOPT is a Python package for convex optimization. It includes * Python classes for storing and manipulating dense and sparse matrices * an interface to most of the double-precision real and complex BLAS * an interface to the dense linear equation solvers and eigenvalue routines from LAPACK * interfaces to the sparse LU and Cholesky solvers from UMFPACK and CHOLMOD. * routines for solving convex optimization problems, an interface to the linear programming solver in GLPK, and interfaces to the linear and quadratic programming solvers in MOSEK * a modeling tool for specifying convex piecewise-linear optimization problems.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython-cvxopt
PackageSectionpython
PackageVersion1.1.2-1
SHA-1B3BD4B6FDBEE00EEB4BE7CF81BE0A35686659490
SHA-2567D8E55D364DECCDDB0B963C7C7E1C56972321419C5D3D77794C01ED0BBBDE078
hashlookup:children-total86
hashlookup:trust50

Network graph view

Children (Total: 86)

The searched file hash includes 86 children files known and seen by metalookup. A sample is included below:

Key Value
FileName./usr/lib/python2.6/dist-packages/cvxopt/dsdp.so
FileSize21584
MD5852643D1D0B68D590C846A86613EF962
SHA-101363E729E0462BC6513A7B225B4A4341834889C
SHA-2562EF39771F235E34C24F18A6232B9AC301FDBCB9E97250594F92F83BB0660AB16
SSDEEP384:skY5c9aTsRdba31CBbdqwKg6+VAVNsOqXeBLk:rEQRdb+IqRDVuOq
TLSHT1AAA2D706E7A0DABAC0C88BF458E79126AE70B049D735521B374CB2307F62B954A7F725
Key Value
FileName./usr/share/doc/python-cvxopt/examples/filterdemo/README
FileSize445
MD51836C6FE26415939D5A6F32D3E1A1E34
SHA-1020D546E5EF64BE6333D2E45BE1B1DFC32F83C35
SHA-256E0BD74AB3AB9E69F55A77A6DEDC7BDE44750C3D250DAFABB2FC61E121AF03095
SSDEEP12:eZsDkMJ4/REY7AIKI08goCShQRv26NepL5XFHncqCcoCPPpG:oKkMJ/Y72I0KCQ0v26UpLZFHncjCZG
TLSHT123F02300C40D7DF4E342201BFD321470D8B5C90C23EA30195CFC56E55943DB0D4D1A90
Key Value
FileName./usr/share/doc/python-cvxopt/examples/doc/chap9/acent
FileSize976
MD59A4E0678B4C810C6A708A7754A3A616A
SHA-1038F004A4D144EE9E886F83ACC7903A6835A67B6
SHA-256D47245BFC5530F3BA38D8009B2E374EAB65B4FAC33ADB17E0F052F476F32FF91
SSDEEP24:+PQA7N9Ez7Nwgw32MFEBCFENPMjnDM+iuZQrFHrcMP4ub:+PQey1wL32EZFaPMDDM+14FLxP4ub
TLSHT1B51110447C52B02D437BC21984C61644D768254BCD0A687A3D5D47C0FF272E0E2B0B9A
Key Value
FileName./usr/share/doc/python-cvxopt/CVXOPT.pdf
FileSize829834
MD5DF9D13C75EE3B194A3F47662705031AF
SHA-1039434BB93AD61514855B44C1BC4B4462A1A37F9
SHA-2567E9605667BED2A850CFDCEAD371A7C4C43655CEF7C80D3E867AC501C899B8E28
SSDEEP12288:slgvUV+pbdRAhvIQJ17qqM7cy/PfN17pHHXnvKu97OLbzpX+Yhg5Uch3c:slgcgiRe7z/dfH3ScOLbNXzg7c
TLSHT188057B78E6D84CCDF5C2DB7A843B756C566F7273AED87842643C8904D48648A6BC3AC3
Key Value
FileName./usr/share/doc/python-cvxopt/examples/doc/chap10/roblp
FileSize514
MD5ECC3259FFA27947B22A2DDFB2B62E7CB
SHA-107DF13023D1F3622CE91AA38DB09568098415ED7
SHA-256B448C32AA4D92151BA81728D353E67A33AA8684F29636C0E55A4CAE4A4594B91
SSDEEP12:He9z7NQWn7HBtu5nld7lyl/lZPGGg2IFaZ6N2F+BNSWEg:+97Nx7SZ/7lM3g6ZQ5bAg
TLSHT1D4F00E09B850BCB09ABEE8548DCC1A103632368A0A713D02349C0789CFE87707EB3F89
Key Value
FileName./usr/share/doc/python-cvxopt/examples/book/chap4/rls
FileSize2150
MD52A30115F6FD41D1A7A42C043BB92AD80
SHA-109C6C645F20A77C3DA7D67B6DA4F3DC9071B2561
SHA-25653269EBCE14E334B2F6228C18BFFBE13A3603A4EE9F0B97EE7AC203D3AC508E8
SSDEEP48:jsgIh5vtaKKgLQmKmkRaaqL8PecqLlZ9GQffQn15eXiYtqf:jsvXv3KgspnvPeHQw615eyYk
TLSHT10641745EF453BFB90D5BC0BED2E93A094B6921BB8D09A912341C2B55C7D3CCC5074A16
Key Value
FileName./usr/lib/python2.6/dist-packages/cvxopt/base.so
FileSize181280
MD5365281CF42DC76107DE92878D798C291
SHA-10C4E5AEBE9FE0CADD5057001DDD2E92146128E6B
SHA-256847FBC4B705A46B07CA03DE206A665EC1B40024634DFFB14FC0CBC733861F3A6
SSDEEP3072:j7wBs4TXxeiS2yM1Z/egVWuknV8SBRnol:nupSKDEuYT
TLSHT109042967D06110BCC5AAD0354FA7A133BAF1B82843292B7A76D8DA312F27F10576FB54
Key Value
FileName./usr/share/pyshared/cvxopt/solvers.py
FileSize1481
MD50050B28E427BED8D4CA2A5FC23D4910B
SHA-10DF0C1B75773F0858BCE6DD3300D6271A1242180
SHA-256D03CDDCCE853AEB2881529E05DABA8542C1405DBD26A2718606BE3F7714706F0
SSDEEP24:ec5T9Umc5UQboQtxFRzGfmx/4I7/q2SSCUGI7SiyUVOkHxhqTbV3njd7nU7eRx50:ec1am6UZScuwInPzGItyUjH6HRx5sN
TLSHT13931421D4032F7BC09866285A746E44E5B2DE902F96B54003D4E9F5EE31AAB089DB5DC
Key Value
FileName./usr/share/doc/python-cvxopt/examples/book/chap6/huber
FileSize1815
MD50018CD52B9B1E9D11559CDC8B55DB98E
SHA-10F19013FC870E43C5D00F21930040DFE0E433299
SHA-256759E90D83EE2115618153D69735C1E13478448BA70E7ECBC120F0B03CC2ABB8C
SSDEEP48:+2s7ngZaTVnWX8LhwO2VFXWxKyS2kDHVYZp8:+2sLnVTL6O7dSDRYZy
TLSHT19531FF28E26BA01E86CBC0B6F4D4FF930E51859DBD06AC56772C9DC4BB0B5558E3C287
Key Value
FileName./usr/lib/python2.6/dist-packages/cvxopt/glpk.so
FileSize25456
MD515F0A38F8184F0325B8BBCE16EE552CB
SHA-113BAEC21BB49FFC81AE178287DC2EC9666403B9B
SHA-2566629BAD07259C13113D01111D4EB62BC2287660D5EBFD8E959549D7CB3ECE2E0
SSDEEP384:h2MdZeuY+Q0VRafa8yBkhCFq/T6qWoa414fm:h2MZeuq07vqhrzWoa414
TLSHT19DB2FA5BE0E2157DC049933048D7D663ABF4BC4DE661A7A7344CEB702FE2A50972EB90