| Key | Value |
|---|---|
| FileSize | 1451824 |
| MD5 | 812AA62CA25CDD3AA99B589DA3107B12 |
| PackageDescription | Python package for convex optimization CVXOPT is a Python package for convex optimization. It includes * Python classes for storing and manipulating dense and sparse matrices * an interface to most of the double-precision real and complex BLAS * an interface to the dense linear equation solvers and eigenvalue routines from LAPACK * interfaces to the sparse LU and Cholesky solvers from UMFPACK and CHOLMOD. * routines for solving convex optimization problems, an interface to the linear programming solver in GLPK, and interfaces to the linear and quadratic programming solvers in MOSEK * a modeling tool for specifying convex piecewise-linear optimization problems. |
| PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
| PackageName | python-cvxopt |
| PackageSection | python |
| PackageVersion | 1.1.2-1 |
| SHA-1 | B3BD4B6FDBEE00EEB4BE7CF81BE0A35686659490 |
| SHA-256 | 7D8E55D364DECCDDB0B963C7C7E1C56972321419C5D3D77794C01ED0BBBDE078 |
| hashlookup:children-total | 86 |
| hashlookup:trust | 50 |
The searched file hash includes 86 children files known and seen by metalookup. A sample is included below:
| Key | Value |
|---|---|
| FileName | ./usr/lib/python2.6/dist-packages/cvxopt/dsdp.so |
| FileSize | 21584 |
| MD5 | 852643D1D0B68D590C846A86613EF962 |
| SHA-1 | 01363E729E0462BC6513A7B225B4A4341834889C |
| SHA-256 | 2EF39771F235E34C24F18A6232B9AC301FDBCB9E97250594F92F83BB0660AB16 |
| SSDEEP | 384:skY5c9aTsRdba31CBbdqwKg6+VAVNsOqXeBLk:rEQRdb+IqRDVuOq |
| TLSH | T1AAA2D706E7A0DABAC0C88BF458E79126AE70B049D735521B374CB2307F62B954A7F725 |
| Key | Value |
|---|---|
| FileName | ./usr/share/doc/python-cvxopt/examples/filterdemo/README |
| FileSize | 445 |
| MD5 | 1836C6FE26415939D5A6F32D3E1A1E34 |
| SHA-1 | 020D546E5EF64BE6333D2E45BE1B1DFC32F83C35 |
| SHA-256 | E0BD74AB3AB9E69F55A77A6DEDC7BDE44750C3D250DAFABB2FC61E121AF03095 |
| SSDEEP | 12:eZsDkMJ4/REY7AIKI08goCShQRv26NepL5XFHncqCcoCPPpG:oKkMJ/Y72I0KCQ0v26UpLZFHncjCZG |
| TLSH | T123F02300C40D7DF4E342201BFD321470D8B5C90C23EA30195CFC56E55943DB0D4D1A90 |
| Key | Value |
|---|---|
| FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap9/acent |
| FileSize | 976 |
| MD5 | 9A4E0678B4C810C6A708A7754A3A616A |
| SHA-1 | 038F004A4D144EE9E886F83ACC7903A6835A67B6 |
| SHA-256 | D47245BFC5530F3BA38D8009B2E374EAB65B4FAC33ADB17E0F052F476F32FF91 |
| SSDEEP | 24:+PQA7N9Ez7Nwgw32MFEBCFENPMjnDM+iuZQrFHrcMP4ub:+PQey1wL32EZFaPMDDM+14FLxP4ub |
| TLSH | T1B51110447C52B02D437BC21984C61644D768254BCD0A687A3D5D47C0FF272E0E2B0B9A |
| Key | Value |
|---|---|
| FileName | ./usr/share/doc/python-cvxopt/CVXOPT.pdf |
| FileSize | 829834 |
| MD5 | DF9D13C75EE3B194A3F47662705031AF |
| SHA-1 | 039434BB93AD61514855B44C1BC4B4462A1A37F9 |
| SHA-256 | 7E9605667BED2A850CFDCEAD371A7C4C43655CEF7C80D3E867AC501C899B8E28 |
| SSDEEP | 12288:slgvUV+pbdRAhvIQJ17qqM7cy/PfN17pHHXnvKu97OLbzpX+Yhg5Uch3c:slgcgiRe7z/dfH3ScOLbNXzg7c |
| TLSH | T188057B78E6D84CCDF5C2DB7A843B756C566F7273AED87842643C8904D48648A6BC3AC3 |
| Key | Value |
|---|---|
| FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap10/roblp |
| FileSize | 514 |
| MD5 | ECC3259FFA27947B22A2DDFB2B62E7CB |
| SHA-1 | 07DF13023D1F3622CE91AA38DB09568098415ED7 |
| SHA-256 | B448C32AA4D92151BA81728D353E67A33AA8684F29636C0E55A4CAE4A4594B91 |
| SSDEEP | 12:He9z7NQWn7HBtu5nld7lyl/lZPGGg2IFaZ6N2F+BNSWEg:+97Nx7SZ/7lM3g6ZQ5bAg |
| TLSH | T1D4F00E09B850BCB09ABEE8548DCC1A103632368A0A713D02349C0789CFE87707EB3F89 |
| Key | Value |
|---|---|
| FileName | ./usr/share/doc/python-cvxopt/examples/book/chap4/rls |
| FileSize | 2150 |
| MD5 | 2A30115F6FD41D1A7A42C043BB92AD80 |
| SHA-1 | 09C6C645F20A77C3DA7D67B6DA4F3DC9071B2561 |
| SHA-256 | 53269EBCE14E334B2F6228C18BFFBE13A3603A4EE9F0B97EE7AC203D3AC508E8 |
| SSDEEP | 48:jsgIh5vtaKKgLQmKmkRaaqL8PecqLlZ9GQffQn15eXiYtqf:jsvXv3KgspnvPeHQw615eyYk |
| TLSH | T10641745EF453BFB90D5BC0BED2E93A094B6921BB8D09A912341C2B55C7D3CCC5074A16 |
| Key | Value |
|---|---|
| FileName | ./usr/lib/python2.6/dist-packages/cvxopt/base.so |
| FileSize | 181280 |
| MD5 | 365281CF42DC76107DE92878D798C291 |
| SHA-1 | 0C4E5AEBE9FE0CADD5057001DDD2E92146128E6B |
| SHA-256 | 847FBC4B705A46B07CA03DE206A665EC1B40024634DFFB14FC0CBC733861F3A6 |
| SSDEEP | 3072:j7wBs4TXxeiS2yM1Z/egVWuknV8SBRnol:nupSKDEuYT |
| TLSH | T109042967D06110BCC5AAD0354FA7A133BAF1B82843292B7A76D8DA312F27F10576FB54 |
| Key | Value |
|---|---|
| FileName | ./usr/share/pyshared/cvxopt/solvers.py |
| FileSize | 1481 |
| MD5 | 0050B28E427BED8D4CA2A5FC23D4910B |
| SHA-1 | 0DF0C1B75773F0858BCE6DD3300D6271A1242180 |
| SHA-256 | D03CDDCCE853AEB2881529E05DABA8542C1405DBD26A2718606BE3F7714706F0 |
| SSDEEP | 24:ec5T9Umc5UQboQtxFRzGfmx/4I7/q2SSCUGI7SiyUVOkHxhqTbV3njd7nU7eRx50:ec1am6UZScuwInPzGItyUjH6HRx5sN |
| TLSH | T13931421D4032F7BC09866285A746E44E5B2DE902F96B54003D4E9F5EE31AAB089DB5DC |
| Key | Value |
|---|---|
| FileName | ./usr/share/doc/python-cvxopt/examples/book/chap6/huber |
| FileSize | 1815 |
| MD5 | 0018CD52B9B1E9D11559CDC8B55DB98E |
| SHA-1 | 0F19013FC870E43C5D00F21930040DFE0E433299 |
| SHA-256 | 759E90D83EE2115618153D69735C1E13478448BA70E7ECBC120F0B03CC2ABB8C |
| SSDEEP | 48:+2s7ngZaTVnWX8LhwO2VFXWxKyS2kDHVYZp8:+2sLnVTL6O7dSDRYZy |
| TLSH | T19531FF28E26BA01E86CBC0B6F4D4FF930E51859DBD06AC56772C9DC4BB0B5558E3C287 |
| Key | Value |
|---|---|
| FileName | ./usr/lib/python2.6/dist-packages/cvxopt/glpk.so |
| FileSize | 25456 |
| MD5 | 15F0A38F8184F0325B8BBCE16EE552CB |
| SHA-1 | 13BAEC21BB49FFC81AE178287DC2EC9666403B9B |
| SHA-256 | 6629BAD07259C13113D01111D4EB62BC2287660D5EBFD8E959549D7CB3ECE2E0 |
| SSDEEP | 384:h2MdZeuY+Q0VRafa8yBkhCFq/T6qWoa414fm:h2MZeuq07vqhrzWoa414 |
| TLSH | T19DB2FA5BE0E2157DC049933048D7D663ABF4BC4DE661A7A7344CEB702FE2A50972EB90 |