Result for AEC8297B787C511DC86CDED18D1942AA02963BAE

Query result

Key Value
FileName./usr/include/dart/utils/urdf/URDFTypes.hpp
FileSize2026
MD546F6543015A68F8ABE3FBBEA6CD8A1D6
SHA-1AEC8297B787C511DC86CDED18D1942AA02963BAE
SHA-25636C9E906850F96895EA97E72A2F93B94A6A6E36E0DE0B83DC1E701F745ADCBEA
SSDEEP48:geO6rYJdUlrYJTLx132sDw53PEHA13oo0BHqLaey:C6rYJd0rYJTLx13A53PN6BKLi
TLSHT13A41535A01401F9346C615B52A55A988A18DB52F3F336C0938AEF3895F5FDEFC8ABC50
hashlookup:parent-total31
hashlookup:trust100

Network graph view

Parents (Total: 31)

The searched file hash is included in 31 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize29428
MD553E9D0FA354DD0965E6022AAE9D35FDA
PackageDescriptionDynamic Animation and Robotics Toolkit - URDF Component Development Files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains urdf utils headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-110783AB78A9FF0627F461222DAF880AEECCC70B5
SHA-2563D176C18D15E1EE9D6D06FB1347EFF62D53619C39E5BE3324A9C140B41C6965D
Key Value
FileSize29440
MD5CF0ED4A52BA9E17C816CD043AB1481DF
PackageDescriptionDynamic Animation and Robotics Toolkit - URDF Component Development Files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains urdf utils headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-114F2677C4F974CD293E218351966E829021B95E6
SHA-256D1854CD2079D02DC28C2F7432F3CF73E52AC22A3C8F8512F32F2FD33C7DD7EEF
Key Value
FileSize29448
MD52B31FE68437C146B039EF364417D0161
PackageDescriptionDynamic Animation and Robotics Toolkit - URDF Component Development Files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains urdf utils headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-11740EE541FADA842CF3819FB64243519FADA74FA
SHA-256108197E74F0A05E7FD32E4C1CB3A0F6725C833A7CA899CCD0BAB29742336539A
Key Value
FileSize29444
MD5545877F3C9DAAADFEACFC4B0CAEC6BF5
PackageDescriptionDynamic Animation and Robotics Toolkit - URDF Component Development Files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains urdf utils headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-119D61F61C049D77D1A6F482CABE62DD77892CD86
SHA-25606F426BE27D3A8951FD3D9CDCC503B38B8A90071966E69B114952EE75F616B34
Key Value
FileSize29484
MD5D1A1AC09415330DA3979C65C66A5A9A2
PackageDescriptionDynamic Animation and Robotics Toolkit - URDF Component Development Files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains urdf utils headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11
SHA-11B7FB3E506F99D397EDAF16946FE56780532999D
SHA-256021012E7EA2FFAC39AC18CF9588A6D3EF1012C007C5C722FCBB43E57E1F10461
Key Value
FileSize29484
MD53E16E82314B8B13DE346A10962EE2BDD
PackageDescriptionDynamic Animation and Robotics Toolkit - URDF Component Development Files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains urdf utils headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11
SHA-120D94516B9964191FD56EF0DBB9C6FEA9BF13FF8
SHA-2568C7AE72F9F26D5C43E3BA2A7C604119DA3CBCA085801D9A859E754D2777D5A69
Key Value
FileSize29540
MD50CAD488606E544B7B603279F684AE48D
PackageDescriptionKinematics Dynamics and Optimization Library - URDF Component Development Files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains urdf utils headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b1
SHA-12270EE3ADCA0BF6F975C246AB84457449B347C51
SHA-2564D47776AF3BD58C48822F75CABEF91097D1672F502DAC8D8D8D3BC63FF5D6F5A
Key Value
FileSize29536
MD5ADCAC397792EE2472935602BCF6D2EDA
PackageDescriptionKinematics Dynamics and Optimization Library - URDF Component Development Files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains urdf utils headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b2
SHA-1243ED2BB7E16B2B5BA0E50AC4D1D670995CE2424
SHA-25640CD3A1E6D1EDE9918F1CD929A45DE78243F32A53010FEB10D0723F371DE3591
Key Value
FileSize29440
MD5EBE4975F43981D037A41D3F79142A74B
PackageDescriptionDynamic Animation and Robotics Toolkit - URDF Component Development Files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains urdf utils headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-1294A381DD96AAE05AA8DE82C1CC432BC18B5CE06
SHA-256E87880D67E5D7466D37B50DFA813A048E27C81ABFF6B09864184328851CECA29
Key Value
FileSize29432
MD57F981188F9FC5149653AD008BD15028B
PackageDescriptionDynamic Animation and Robotics Toolkit - URDF Component Development Files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains urdf utils headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-utils-urdf-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-10
SHA-13878D181F9E7A1F6F90CB20E333077CDDBE75FFF
SHA-256B88E76F96DAB6A1C6948B7CA7A049F7E41AA0E86FACD50A845AA56ACED17ED00