Result for AE4F0196F318FC7330BA7A9C331D893C99DFC714

Query result

Key Value
FileName./usr/share/dart/cmake/dart_collision-bulletTargets.cmake
FileSize4191
MD5E32FF407E6F68266138C793B7BDAC7BB
SHA-1AE4F0196F318FC7330BA7A9C331D893C99DFC714
SHA-256C2B0E390071DBB29AA5A967F8268F47126E45714BA58DB6A9302B4F76494DBF6
SSDEEP96:ZNz5QU4EhYxmgKT3kaCMtbbe7hPT/L+XmqTQJUM:56UCMM7hPTyvTQB
TLSHT1B181102B1F4F0AE163E3D3913FD1932BE45290F72B436154FC89625826EC5584ADF1AB
hashlookup:parent-total24
hashlookup:trust100

Network graph view

Parents (Total: 24)

The searched file hash is included in 24 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize25460
MD59300190EA09D9B35CBECEDC8B736A277
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b1
SHA-109A76E1A15077A8B5AD214090BD2D3708EA3458B
SHA-256ACFABBB693BD1D30E40DB97E06E29D3E7FFB612BE830FCC935372A0DD85F5C2F
Key Value
FileSize25188
MD550740BB56D9F2789232CAF560E3565B6
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4
SHA-117EFFF3500BA263E4C2B85CF16CEB90AEFF4EF0B
SHA-256D2BACC1E7FBDD360C15AEEB3A9FB61B6C8D8975668193A4C90EA557AE797D050
Key Value
FileSize25192
MD5C98A360F498AC58DBE9A5A22CD5B9707
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4
SHA-120180D3000180D984DAB9351FBC73A4C1B054896
SHA-2569AFF61C082F63CB76FBC2069FE7D7C5B7FC3AFFECD6002727CB0A254BB0F6A45
Key Value
FileSize25476
MD5C03EA2D3478E4368C329C7EA1516C327
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b1
SHA-1292DC2A8EE365F96AEF87E93836AFE070F25C636
SHA-256838DD3C7EE0CAE636B26F145624127A6929FB225B85BC682D081D722601591C6
Key Value
FileSize25196
MD5397D2A794274272B3D93C8F0BD958ADA
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4
SHA-12CCB6D600CAF5B489BDD438055D5184589FE3048
SHA-256D463E69901589BC7CCCBDE0CBD1A4553152BD0491C33905947FC909BEB209046
Key Value
FileSize25188
MD59AA20A1CFCC69362F141879D6689693C
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4
SHA-134D4E23DD84BCD7AF605F435D902AC5530222DDA
SHA-25666F7ABDD4CC007E89628DD409C5D33DB0235AF89BABFDF92BF7E51CFB2C25C45
Key Value
FileSize25200
MD52063ADB10BD37562C935A8BAC86CF715
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4
SHA-137E5AA7ADAFB139FA36546C9AB8BC26388F43116
SHA-256A04D80A4B661B1B573D2397F7EB3498359B8A47826C59E630FD8E6409846E23E
Key Value
FileSize25464
MD5611F7BDDECE6E809AC41B875727E5C6D
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b2
SHA-139CCB2AB3F9FA035FCD5E70DE7553B3298B6FCB1
SHA-256E808F95EB940D015B33D0F5B91ECF33131AAE15F66F78DE2E9F41C7DF8C9D706
Key Value
FileSize25476
MD595B2D35FC0D69721EC5CAE36B4A9DD54
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b2
SHA-15B28A46A0C3021CCE189468A82834443C23652E6
SHA-256826D6DD5475727F9E98AFF227C6BF712D2996924AA97FA2BA51CD0E3932A9BE6
Key Value
FileSize25456
MD5AC7B2FAB287C6A32C8E0D41039C08859
PackageDescriptionDynamic Animation and Robotics Toolkit - Bullet Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-bullet-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b1
SHA-1615AE10990EB64B8E2D96298B7008003E2467E32
SHA-256F33ABBC84358EC66D790657460A7C48A923438EAF87189514434A5455A435887