Result for ABD8583C739690B058272EB4118C9581EC7F0CCC

Query result

Key Value
FileName./usr/share/dart/cmake/dart_planningTargets-relwithdebinfo.cmake
FileSize929
MD5074AAF39C41EFE00F197EEE87F8EF414
SHA-1ABD8583C739690B058272EB4118C9581EC7F0CCC
SHA-256480272300F5AB277ECFEAFE68A1CB762636159FD411AED87238F44DBF6F485F1
SSDEEP24:x3m7dS0qUMYA7HfyFIBHijur/rQkhJFJGjuriyjUu:FJUMRKmHiS7c6FJGShUu
TLSHT1E3111E725FC80EB312CBEEC2B5910104D1B4D3BBC74A7A4E44CC21390196219153E41E
hashlookup:parent-total3
hashlookup:trust65

Network graph view

Parents (Total: 3)

The searched file hash is included in 3 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize27596
MD5DE1C3B891E4C417785C75D1B61216DE3
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.2-3+b1
SHA-1421CFCA59A929C2C1BF5479ADA50C69D1D6BB3F5
SHA-256FE276AAF7BB2C3CE7243E43620AD0D850D9C80EC910CA31AEC45B1AA396E8DAF
Key Value
FileSize27520
MD5F004EAE569246AAE9CC10E03E4236287
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.2-2+b1
SHA-1B10AB8BB7091C90D145F2615543E440C241D5E13
SHA-256550F39B22B14FE0EC73AFA46C89D78BC91476289CCF34CB3FE7F842FD659887B
Key Value
FileSize27592
MD5CAD54017656CABEC8A7039B980285457
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.2-3+b2
SHA-1B72CEC793BAAE9342644107C13149847404976A1
SHA-256843467AEBBA59BA36D19B107D330CED077B3C826E9A444E789DDC0FC959CFC6E