Key | Value |
---|---|
MD5 | DF14951EBA2B6EF4D657ABF40A8CF498 |
PackageArch | ppc64le |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python3-scikit-learn |
PackageRelease | 2.fc22 |
PackageVersion | 0.16.0 |
SHA-1 | A9E273238A6995FFFA1D20D91BD83AC801668D80 |
SHA-256 | E17769CDEE29ED098C50AF0418FE517D79C7FF6A0150626D1700120F9DA13963 |
hashlookup:children-total | 944 |
hashlookup:trust | 50 |
The searched file hash includes 944 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/cluster/hierarchical.py |
FileSize | 40213 |
MD5 | 8445D44F4F9E4D4112DCC21A36D037F7 |
SHA-1 | 000C3C854269C2922BE1C06595F3E880851D30D3 |
SHA-256 | E9F414A812CF50C6FC8061E0C0D971798F41FA8326ABEF670BFE139617C27AB2 |
SSDEEP | 768:b6CfhXuUcGwQogk2J3If3V4Spty5kccGwfoPr22J4HDGV4r2o2KKkPkGwkelh7pD:b64eUPzIf3V4Spty5kcP1rqHDGV4r2o2 |
TLSH | T19B03B722660423715B8790924E7F91A7E34044DF9F5320793DAD92686F12B68F2FFBC9 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/cluster/tests/__pycache__/test_dbscan.cpython-34.pyo |
FileSize | 7694 |
MD5 | 0165FDCC06B23645E39D09D625F638FC |
SHA-1 | 002493EC162595CC9A388A93345FEC02CA154B9A |
SHA-256 | CB1B51E08C9709AAAB04983509B983AFAD73B276FC7949BB64F989FBDAFB134D |
SSDEEP | 192:83Z16VpwiO2oFzPxsWorWqtbL1BlKzTGP88888lU:83/6V6zzJZo6GbYPGP88888lU |
TLSH | T11DF10D9393C1499FF624F0BDE83807259E6AF60A7F08AB964AF5E43D3ED57901806385 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/ensemble/tests/__pycache__/test_gradient_boosting_loss_functions.cpython-34.pyo |
FileSize | 5267 |
MD5 | 9AA6C28DB809DDC3D8BD40DAECA96B0C |
SHA-1 | 006442337AE4CB54B232B75D514666C3236928B5 |
SHA-256 | 2C0C7D1B6DF1B51AD21D88587CAE2C1935C54D129DB9D5207C1EBEDF8F0DBF59 |
SSDEEP | 96:2dOHIcnjAgDNbmMTk+jNUrABSd5WFoWcCScjv7jmcUH4kr0dcwu/GcGGgohF3UHc:zEWNbPTki2ikWDXqSdNu/23pE888u |
TLSH | T190B1FAA293C28A4FFA20F1B5907453069FB7EA19BF1117511AF1E03D3FD4B859D26285 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py |
FileSize | 2407 |
MD5 | 6CCA3A2DFA57FF6AF3CF3A27AE22F209 |
SHA-1 | 01070C25205C477A297A7CCE48DA78871F64DD2C |
SHA-256 | 298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8 |
SSDEEP | 48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq |
TLSH | T1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py |
FileSize | 1895 |
MD5 | A4CC2943F64D2730EF80B9504C583D19 |
SHA-1 | 011BDEF5443BE65B5EC29C9D37FCEEC7206429FA |
SHA-256 | 2B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC |
SSDEEP | 48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr |
TLSH | T15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/linear_model/tests/__pycache__/test_logistic.cpython-34.pyo |
FileSize | 18170 |
MD5 | 73FD09EF5A85A8E936967969D346D5C0 |
SHA-1 | 0138443530C68B73431A5A4DE896BBF3DA883435 |
SHA-256 | 9B4AF683738A632E9822B6B066683CA3272627056BCD6F66CB2D94481EA15396 |
SSDEEP | 384:WOsFjHYLF0TGsXqtOaEGB0J6/zR40hUUYk6JqUT2sL0b2qeJnGFdjm0jI3z8888W:mYLF0TGsXqtOaEGB0J6/F4uUbk6JqUTE |
TLSH | T1EF822B9063C2898BF660F2B9A0705311CEB6F68ABF40A34597F1D47D3FD07959D1B28A |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/neighbors/nearest_centroid.py |
FileSize | 7219 |
MD5 | 3F05ED5457FCF69C422C4EB5F5D86CA4 |
SHA-1 | 0164D287CCF459DEB314C9B84916163D69BEEE13 |
SHA-256 | 0A2CAF710C753B10E6D10F95CF1D2E91CD430CCF9CF37EB0B95A300A138040D6 |
SSDEEP | 192:zLmCsu7Ej7Mvse9Du2izWTOgxMW2MB7lxXB:/maELeZu2iSO+32MB71 |
TLSH | T1D5E1B5166B061B3AC787C46396CD495BB746863B9364182E3CFD52642F0142CA3FFDD9 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/decomposition/tests/__pycache__/test_factor_analysis.cpython-34.pyo |
FileSize | 2481 |
MD5 | CD151F340DE5B9E483C1EB5FF51C1B40 |
SHA-1 | 016B8B94EE1AA2D9FD3E8FF85B3E19E5D73D177B |
SHA-256 | 273DB66BC244465AD6A383203D3B7C763451BE36B8509FDD36D6807C2E7AFB23 |
SSDEEP | 48:arXStpnVVsmcSVW4neMVuqQlrPVI2ipNRSnS1AuluwT5rdlN7ge4OacnqI0mh4mS:8oHVNeiuqsdINccAuluwBHNke4OaxDmC |
TLSH | T1F95160C0A3838A5FF610FA78A5B9430AAEFAB5F18A30EF9449B0D4BD2AD83508513505 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_swissroll.py |
FileSize | 1446 |
MD5 | 6C764C92907310B7717595E840304798 |
SHA-1 | 0193A74906128D26183FB66001B61CA5D447B865 |
SHA-256 | 5D7791C51D76DD46308EE5B4B799509831C1EEDC2D767C39B78E7E98A39B066D |
SSDEEP | 24:x2RAnm7PXQ2KQsFe3M/MDyC5NJYTC4aeujm5tSU3+LVJU3+PbYY1+BZjs:xEAn12KED3JLe0atSfJNYYqs |
TLSH | T116313F1C2E07B27697A2F0E83E6417DDEB515A009F2044F8B83D68F45381B7CB82D51B |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/utils/__pycache__/metaestimators.cpython-34.pyo |
FileSize | 2635 |
MD5 | 26EF1BA5E844C877F077A78F8454F60E |
SHA-1 | 0216C830218A32B4AF9306596DC6EB93767BEB43 |
SHA-256 | A46750FAD4FACF9C79EAA35F7D142CEA7711692FF109B3ADAE67FC83E513372F |
SSDEEP | 48:LmijTBlGmXmfYSCrXgR6S/8Jy19BIGivl3Uj7M9EV:tj98muY/rQR6jI19iG+l3Uj7MuV |
TLSH | T1A851659B5AD29272F9AAE3BB402A00165B12D647830F930774DCE0BD1FCC3908F71649 |