Key | Value |
---|---|
MD5 | 9025232E3D4D5FB9A692C4643ABA8CCE |
PackageArch | s390 |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python3-scikit-learn |
PackageRelease | 3.fc20 |
PackageVersion | 0.14.1 |
SHA-1 | A473E39F4DACBDC9A3DBB3924FC4BE2A9F65D425 |
SHA-256 | 06B69C7D747F69A643DF19F286CB8DC31AB90F2635E1AABA97C1BF66D579EB95 |
hashlookup:children-total | 801 |
hashlookup:trust | 50 |
The searched file hash includes 801 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib/python3.3/site-packages/sklearn/covariance/__pycache__/shrunk_covariance_.cpython-33.pyo |
FileSize | 18812 |
MD5 | 5C60EE5961B31D00C13470F2D0147F28 |
SHA-1 | 000F9F18E14A5347E0AD4BADCBABA9AD420F8D9C |
SHA-256 | 733C2F370CDE9B228B2F9BBF09B11488FC20BDD672B0515FF846868154A6D949 |
SSDEEP | 384:nCttSqN3gQbPWW6wh9agRv0orq9O3tmTf+FpcU/N+xqd43JY:MBNNbO+5u9OdmTfY3Npd4ZY |
TLSH | T1AE8242047B1D4AEAD956817271FCC283CA61A4E7D794361075EE87BB1FC623A42DFA80 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/linear_model/plot_ols_ridge_variance.py |
FileSize | 2032 |
MD5 | 44A08C8EAB78FA8522617D143280CE43 |
SHA-1 | 002D35237E1045669AE711D219C5C7E2C828DF64 |
SHA-256 | DF23A76B9DA4857633A934C3CDEAC1FB3F1C3C0BFA5266F2CF148F22CC3F7240 |
SSDEEP | 48:4YOa+3VOPSAN5mAOxGwq0JcrsyPAhpa2b7TyJANfeK6AK/l:4YOTlvsmAOxGwvJdyP7ifmWeK6Ail |
TLSH | T15841861B62861B73A337942DBDB9329C7351409F79427CA57BFC61085F8172C0EB94B5 |
Key | Value |
---|---|
FileName | ./usr/lib/python3.3/site-packages/sklearn/cluster/_hierarchical.cpython-33m.so |
FileSize | 51504 |
MD5 | 90CF0D8E6E617ACE9889FE98B436CA70 |
SHA-1 | 00D4F1A989465FE9283E536739EAFA727E1E92CE |
SHA-256 | 23C1E66339E1A98773594642E5FF851BC8A7CCC2453CEDED3E77F841D4217314 |
SSDEEP | 768:dLtrh43DwW3e+TSakIVX0fHn+ehPtop3DA0/ka3eQFHWKJ0GY8:dJhecWdSakNewcDMHVKJ098 |
TLSH | T139330B4A7B388BB2CC941A3749BFC74F2BA65C27050A464F8F0CF65EBC079598A17709 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py |
FileSize | 2407 |
MD5 | 6CCA3A2DFA57FF6AF3CF3A27AE22F209 |
SHA-1 | 01070C25205C477A297A7CCE48DA78871F64DD2C |
SHA-256 | 298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8 |
SSDEEP | 48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq |
TLSH | T1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/exercises/plot_iris_exercise.py |
FileSize | 1577 |
MD5 | 3CEE1240FBA2960897069B76B5637772 |
SHA-1 | 0116272B06B5037C5FC6E48E289CAD5FC1E6CC61 |
SHA-256 | BE809F9603D572D38F9B2B5C30FDDBC3865711F28480FD46C2EDFED3DB78BC83 |
SSDEEP | 24:/AX9SV6wq4Vxknvg059WbkKX52BrpH2sCU5tkLtmGvItyG4bxpZNbH/D:IXcVVVqrKX5m8lMtggGPbxfNz/D |
TLSH | T1F031201A904E337213C790BD82EB29846B5366234B44687A777DB7D1DF02764F239942 |
Key | Value |
---|---|
FileName | ./usr/lib/python3.3/site-packages/sklearn/tree/tests/__pycache__/test_tree.cpython-33.pyo |
FileSize | 22623 |
MD5 | 9AD371C8BB3A1B79DA4DEAE97AF0D2FE |
SHA-1 | 016924042147A1A9D32917B189B7EED34003B25F |
SHA-256 | 21240F360A1E5057E9650F199E97C592E41CCD94F9151FD1037E40C54AF9E00F |
SSDEEP | 384:L5CjPAFK3VCBuT746gZnTQo+nzwiyMx3M9k3bRS/9rE888Sp:NCjPA03VCBuT746gZn8o+nEiyMB2k3bP |
TLSH | T1A0A22E81A3FE49C7D2721A7578704321DDA2F9BA6D407F4212F1F4793AD8732B45E289 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/plot_rfe_digits.py |
FileSize | 852 |
MD5 | 9103650C2F36397AB88DF835B34D38B5 |
SHA-1 | 02C0A867F5D8E9C34607BCE93EF5ABF7C6F495A9 |
SHA-256 | 9F282DADA6645094618C0A5BFA1913CC17F1384A2BBEC0B7B7783AB89CBE9928 |
SSDEEP | 12:ilgJr4Y/8OREMeyAMyfbyvmvA9NZfXALqSkAVL/KO5Oe4N6sYD:iqh4E8HyLyTyOEfXALCAVIGh |
TLSH | T141011E5D5220B7771DB758B582F5809319F20D3A2341622015A8CA658B82BB6FFF7A43 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/plot_kernel_approximation.py |
FileSize | 7974 |
MD5 | 92E29404D8F074E46F35C40F20766AB8 |
SHA-1 | 02FB35C9AF06F6F6872DFFCAAC0A51570D42B6A2 |
SHA-256 | BF5D973C48EC576C568FF9ECFB74EA75395EBF29B4D1C19AB82D210B6A4DDCF4 |
SSDEEP | 96:0X75FrUiJKIiRjQBdLdgooMgFYZygEqTgR/KYIOcITTmpsm51iuPztYi:+75FQiti6KYZkR/KYIOcITq1iuhYi |
TLSH | T17CF1E80B20E30B3223B7207C23DC21C7BFA49056E9975A3DF99D8654379AF21E276649 |
Key | Value |
---|---|
FileName | ./usr/lib/python3.3/site-packages/sklearn/gaussian_process/__pycache__/correlation_models.cpython-33.pyo |
FileSize | 8915 |
MD5 | E4CC56D56EB1AD45643BAE35CBA7ED74 |
SHA-1 | 03024D8DD9B3856CDA4100F45C062DF7460BD9A1 |
SHA-256 | 06869F49150E29703671AB36ADAA1B27756CB1482F205BE809C5F624AA1EDB6D |
SSDEEP | 192:+ypINj8civsWNjNJyvL2TnX2Rhv+nOgNVtvwaEjO4vw3Mj3iD9:XpIqBvN8vL2Tav61PvwaUvw3R |
TLSH | T1ED0213858FAD06EAE1D242B034326403DD63C47B3A829B04369DF4A43FD5F71992F6C9 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python3-scikit-learn/examples/ensemble/plot_adaboost_multiclass.py |
FileSize | 3585 |
MD5 | 34017803563CB9F9B635C002523C75AB |
SHA-1 | 0322042E7BF79C438AD29D097C0E77A689587F33 |
SHA-256 | 50E1E9107975866013E5FFB4FA9033867E9BB126CC32959A3E9CC4E3E4204164 |
SSDEEP | 96:ir9H8frWUXgINfBhroMYbPXwW/K/oKR6m257TwDLj5dlTn2093:DC3iXR6mp1N |
TLSH | T1F07193258A666A3187B96CFECCAC526D3360144C9D22D009B5FD8F300F0BF19ECBA2D4 |