Key | Value |
---|---|
MD5 | F949F0A119119E5EB2F9B7B13691AF4F |
PackageArch | ppc64 |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python3-scikit-learn |
PackageRelease | 2.fc22 |
PackageVersion | 0.16.0 |
SHA-1 | A330C7F45847808D2DE3C7CF0F299F8DA88DB974 |
SHA-256 | D7F8C42B2C2B38249C6D6BFB67C0E4FA791631FAF70C1596397F7353098DD259 |
hashlookup:children-total | 944 |
hashlookup:trust | 50 |
The searched file hash includes 944 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/linear_model/tests/__pycache__/test_logistic.cpython-34.pyo |
FileSize | 18170 |
MD5 | 755CE6CE4C2C2FFAD76634A4D7E1A82D |
SHA-1 | 0007D51583CF577DBD037FB6FE08A52440549075 |
SHA-256 | 6DBCE8F9C7A93BDB8F8B4E71745642D7922C617497001867CB7F16D73C1019EA |
SSDEEP | 384:QOsFjHYLF0TGsXqtOaEGB0J6/zR40hUUYk6JqUT2sL0b2qeJnGFdjm0jI3z8888W:0YLF0TGsXqtOaEGB0J6/F4uUbk6JqUTE |
TLSH | T1A1822B9063C2898BF660F2B9A0705311CEB6F68ABF40A34597F1D47D3FD07959D1B28A |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/cluster/hierarchical.py |
FileSize | 40213 |
MD5 | 8445D44F4F9E4D4112DCC21A36D037F7 |
SHA-1 | 000C3C854269C2922BE1C06595F3E880851D30D3 |
SHA-256 | E9F414A812CF50C6FC8061E0C0D971798F41FA8326ABEF670BFE139617C27AB2 |
SSDEEP | 768:b6CfhXuUcGwQogk2J3If3V4Spty5kccGwfoPr22J4HDGV4r2o2KKkPkGwkelh7pD:b64eUPzIf3V4Spty5kcP1rqHDGV4r2o2 |
TLSH | T19B03B722660423715B8790924E7F91A7E34044DF9F5320793DAD92686F12B68F2FFBC9 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/gaussian_process/__pycache__/__init__.cpython-34.pyo |
FileSize | 463 |
MD5 | E55681CAB244A3D58900C079AB6E9F70 |
SHA-1 | 00373CB0BBC3D5C6F0A9129B41C723F2A7F08245 |
SHA-256 | 9F82E72DC3D4B4BF09E70F4695C86815AD8D6B393A9C46D63BD49E721B5BB928 |
SSDEEP | 12:ERt/jlxdzpwnhpWiY/od672k5ETJ17RCGGGDI5Db4M:q/ZxpyfRYstk5EX5GgYD |
TLSH | T11AF05C6182968B2BE8BFF275F013412919E474A46734CB230F08D06D2F543A4062B440 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py |
FileSize | 2407 |
MD5 | 6CCA3A2DFA57FF6AF3CF3A27AE22F209 |
SHA-1 | 01070C25205C477A297A7CCE48DA78871F64DD2C |
SHA-256 | 298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8 |
SSDEEP | 48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq |
TLSH | T1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py |
FileSize | 1895 |
MD5 | A4CC2943F64D2730EF80B9504C583D19 |
SHA-1 | 011BDEF5443BE65B5EC29C9D37FCEEC7206429FA |
SHA-256 | 2B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC |
SSDEEP | 48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr |
TLSH | T15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/neighbors/nearest_centroid.py |
FileSize | 7219 |
MD5 | 3F05ED5457FCF69C422C4EB5F5D86CA4 |
SHA-1 | 0164D287CCF459DEB314C9B84916163D69BEEE13 |
SHA-256 | 0A2CAF710C753B10E6D10F95CF1D2E91CD430CCF9CF37EB0B95A300A138040D6 |
SSDEEP | 192:zLmCsu7Ej7Mvse9Du2izWTOgxMW2MB7lxXB:/maELeZu2iSO+32MB71 |
TLSH | T1D5E1B5166B061B3AC787C46396CD495BB746863B9364182E3CFD52642F0142CA3FFDD9 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_swissroll.py |
FileSize | 1446 |
MD5 | 6C764C92907310B7717595E840304798 |
SHA-1 | 0193A74906128D26183FB66001B61CA5D447B865 |
SHA-256 | 5D7791C51D76DD46308EE5B4B799509831C1EEDC2D767C39B78E7E98A39B066D |
SSDEEP | 24:x2RAnm7PXQ2KQsFe3M/MDyC5NJYTC4aeujm5tSU3+LVJU3+PbYY1+BZjs:xEAn12KED3JLe0atSfJNYYqs |
TLSH | T116313F1C2E07B27697A2F0E83E6417DDEB515A009F2044F8B83D68F45381B7CB82D51B |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/linear_model/tests/test_sgd.py |
FileSize | 44051 |
MD5 | 2A30219204D8A3FDB17710890DF5C022 |
SHA-1 | 022C4A0D46C8BE6450F86A4F5A534285740DA850 |
SHA-256 | 80967239521C8F49941B2FE639AAAF0FE5F6BEBFC82FDEBF338E49F746C83D9F |
SSDEEP | 768:gqgGbCeWez6QENuvvCQw0pRHuvt1zvOHy/3M/APJYuzxja2ngbCe+DCihHF02woS:PueWe2zNunCQwIRHulV0j4Z0Ho4ECGFI |
TLSH | T17213C86501731F275347443A88BB874F6A066E334D85186DB4BD860CAF8A179B3EFDB8 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/utils/tests/__pycache__/test_extmath.cpython-34.pyo |
FileSize | 12845 |
MD5 | B6CCA5DB8C7D853A92D8E9764CDBDE18 |
SHA-1 | 028B455639D6F0E04FCD9A0F791326A234350F93 |
SHA-256 | 40E63422F8A1F50187A9C8ABDCE9CE72F498E3B4C9967F405EC8BB4A98309952 |
SSDEEP | 384:WudTLABNBJDESBYX5uxBjhBDKHSrkWW9iqKbfp9bXg1A/xVWfr88877L:WudT0B5ES6X5gzpYSQW2iqKbfp9bXgiz |
TLSH | T137424D61A7CA8A8FF564F2FAA4B44302EEF6F6582F45674146F1E53D2FC43582C1B248 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_cv_diabetes.py |
FileSize | 2527 |
MD5 | E72038F327EB1E9BE42A89248FDADDEA |
SHA-1 | 02B9832007B41F9CEDC0ADF47E8E74156A7D2F20 |
SHA-256 | 5C3E8CB59B8C3592B195A2372E1213A62FD9B27EB7664E8C51CF116BE2953E78 |
SSDEEP | 48:8RSBEU7vtHh44QdkCq1axlZFkmoKCQv73ZIpMm0MNLp:8KLQyCqk7kmzCQTXhMj |
TLSH | T1C751740DF1436B711F4A10F4B58990A03BA2927A6D1B7935786DCB5C9786FF20B324BA |