Key | Value |
---|---|
MD5 | DBAF1268CC6548DA69B7EFA0382FB4CF |
PackageArch | aarch64 |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python-scikit-learn |
PackageRelease | 2.fc22 |
PackageVersion | 0.15.1 |
SHA-1 | A16BAC3D07DB829D729325E141FEFB13FC42EB2C |
SHA-256 | EBC6E78BE6FB065D3F428B073B2579E890B471365D158F4CCFDEA64C345BED1D |
hashlookup:children-total | 906 |
hashlookup:trust | 50 |
The searched file hash includes 906 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/ensemble/tests/test_forest.py |
FileSize | 17601 |
MD5 | 856C9EB5C6357A8E978BB27ED478B14D |
SHA-1 | 0001980ED073FFA12C4D97EE33F9FC4D4A9FF043 |
SHA-256 | 95CDF4DE2328FC18906E92054FE52629B8B6B99CEF8992750C9EA14D9533FA72 |
SSDEEP | 384:RmH3A2etKtuw8ixVT17yl8iMX5nITJojVpKv+66wLoVE/wpL+:RmH3A/tKtuw9xVT17yl8NX5nITJojVpu |
TLSH | T18482D703F8960D595B53297E24DE510827956B1B860818753EFFD0086F9462CB3FBBBE |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/linear_model/ransac.py |
FileSize | 13952 |
MD5 | 67B38A5B19534C15626BEDDA27CE70D0 |
SHA-1 | 000C0BD44626C1E94A98B9CB8615101BC35C180F |
SHA-256 | 526176561F560882ECAE0B67F451191EBFC36F7E9228B327F61452F553983492 |
SSDEEP | 192:1axKzOGnKFnGWjPfIAeMl0Bgox2WGZHO6qWKNRKES6dIhBNRERZCoNbk7A:oK68KRTfIAXkaHRKS6aBsRZhb7 |
TLSH | T17F52940568203B374A87B5B068DE010BC77918A79686A4757CFCC3AD1F6297873ADBD8 |
Key | Value |
---|---|
FileName | ./usr/lib64/python2.7/site-packages/sklearn/ensemble/gradient_boosting.pyc |
FileSize | 58282 |
MD5 | 625432A4115B3D98FDB5457CA2DDD5BC |
SHA-1 | 0056842A3FE2BACCAC716688D1181D838BA2F5C8 |
SHA-256 | EDF44E8CD62B5D9235797C8365D665B04847FD0AE18AE71B9C8B1C11E95BE933 |
SSDEEP | 1536:5FFr/jj4jxqqBy4fV6s/rueuiTsH60RX08PgNSSHdtmoogmQH3GnoosU93:p7jkxqqBy4fVdueuiTsH60RX0ugNSSHu |
TLSH | T16143A286F6421B2BE52185B2A4F4020E9FB1F86B7141275036FDE57A3F9462DCA7E7C0 |
Key | Value |
---|---|
FileName | ./usr/lib64/python2.7/site-packages/sklearn/linear_model/coordinate_descent.pyo |
FileSize | 61222 |
MD5 | 53E0322D6FD8DC5FE1748ED9638AA13B |
SHA-1 | 00712D2DBE4EFDC59AE42831FE3FA2536DDF14CD |
SHA-256 | C0CC92DAE017FF164A1D8674D570CBB6D2950EBB70B3D770E4186FCD7922344C |
SSDEEP | 1536:MbvxIgel4FVoDRKYJPYoPmcI6GCIny6nb3cnwYunb:IpIgel4FVoNyoPmcI6itp |
TLSH | T14053F90A67811BB6865741B17DF800839774B47BAB566A4030ECE7B42FC5AB4C3AF78D |
Key | Value |
---|---|
FileName | ./usr/lib64/python2.7/site-packages/sklearn/cluster/bicluster/tests/test_spectral.pyc |
FileSize | 8180 |
MD5 | D61854426F85D68AFFCB8A9BA1EB664F |
SHA-1 | 008B0FFA5F60272B5A781D56E245D6FFE97B5494 |
SHA-256 | 47DE0BB4FA8CC8ABD4CAAAB91A164A9532D15F68C048ECE8AA7C57C86752C033 |
SSDEEP | 192:mAozSK+E31SDyau1MN1ZQ1n9LS0t1om6S01b1ba1c1qo91T31i190Am8CAuw1W19:2WEFSDniMzinJBTo5B1pbeobTFii8qn9 |
TLSH | T1A8F11D91D3E68E57C8B07235A8F043678E65F4B77940A78112BEE03C39C9355E66E386 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/linear_model/least_angle.py |
FileSize | 46647 |
MD5 | 0B34207DB584C0AFB6E53C76B5E17AE5 |
SHA-1 | 00A97B7C7BA60A50476E062B63A22BCD97867CCD |
SHA-256 | 3A37606F5268D0B0A4066DBE6AB7F2D95EB2FA7091042A567BDC5B8F729F80A0 |
SSDEEP | 768:tgTxOEgCE6oOGtaeHWfOJognFMiTUhd/gTnzoAxEH:tgTxOEgp6YW1gneKed/gTn0AxEH |
TLSH | T16723F80B9D112A384B0786762CDA4083672428B75EEB146534ED5358AF468F863FEFFD |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py |
FileSize | 2407 |
MD5 | 6CCA3A2DFA57FF6AF3CF3A27AE22F209 |
SHA-1 | 01070C25205C477A297A7CCE48DA78871F64DD2C |
SHA-256 | 298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8 |
SSDEEP | 48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq |
TLSH | T1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py |
FileSize | 1895 |
MD5 | A4CC2943F64D2730EF80B9504C583D19 |
SHA-1 | 011BDEF5443BE65B5EC29C9D37FCEEC7206429FA |
SHA-256 | 2B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC |
SSDEEP | 48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr |
TLSH | T15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47 |
Key | Value |
---|---|
FileName | ./usr/lib64/python2.7/site-packages/sklearn/decomposition/sparse_pca.pyo |
FileSize | 8974 |
MD5 | 5C195273EB72B1EC037DE37453D73515 |
SHA-1 | 013D628FDE436256D5E4B3B795791F59EA373D9E |
SHA-256 | 3594D86BCBB40352DE6346BEFDDB609294692D90FF925C48E319D8CD78E6418A |
SSDEEP | 192:byIBF7MRerg3NDWA7CDFcJU0c8JGzd3t9xJCnQT/qlBF7MBef6r8WA7l3GXU0P1b:byIBaRog9yv54GzxjC1lBaBef8DKk/T |
TLSH | T11C0282446A564B2794A5C23069F82097CA36B4B7ED832A4139DDA4383FCB179D27F3C9 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python3-scikit-learn/examples/cluster/plot_cluster_comparison.py |
FileSize | 4865 |
MD5 | 919283D95801BDB1582E6768ADC62A65 |
SHA-1 | 0145D31CB950A8CC679300AF4CF93EC48DE5D612 |
SHA-256 | 64C861D3DC5FE9F11F44F2AA5A86FF15BEB60B26B7974895663F37DC729039C3 |
SSDEEP | 96:hLrD8Hd/MIsALpqtjAFejIHXSNIuGytASwTgSNexmDDz4bW:h4nVBgZ/6tLQW |
TLSH | T176A1857167126117EF93B09A4EB751E837946057075028AAB52CC3254F0BB3CB3F2B9B |