Result for 98AAE2DF3C32CCF9E60A15C5C3B28622338FBECB

Query result

Key Value
FileName./usr/share/pyshared-data/python-levenshtein
FileSize266
MD5392A76E1216C44DCBF2E83D622793729
SHA-198AAE2DF3C32CCF9E60A15C5C3B28622338FBECB
SHA-25626E86CD6776E179FB90FAB395E44C8B86626577E4D5E43D0AB175C8ABA84419F
SSDEEP6:UZpMINJgLQW9Y/9Y3kre2zOnM9Y3LPUe2zOnl9yOUhSn4LWg:f/9OUnMglnljk
TLSHT1F2D02B1417DCD37399E19DEC7F1600288BD434F06E0294C3FA305882DD282C97603F0A
hashlookup:parent-total6
hashlookup:trust80

Network graph view

Parents (Total: 6)

The searched file hash is included in 6 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize62324
MD5525B492ECBB21F837135C74606011F73
PackageDescriptionextension for computing string similarities and edit distances The Levenshtein module computes Levenshtein distances, similarity ratios, generalized medians and set medians of Unicode or non-Unicode strings. Because it's implemented in C, it's much faster than the corresponding Python library functions and methods. . The Levenshtein distance is the minimum number of single-character insertions, deletions, and substitutions to transform one string into another. . It is useful for spell checking, or fuzzy matching of gettext messages.
PackageMaintainerUbuntu MOTU Developers <ubuntu-motu@lists.ubuntu.com>
PackageNamepython-levenshtein
PackageSectionpython
PackageVersion0.10.1-1ubuntu1
SHA-1480C1EF3CCC9D7B11D75ADF5B4800C0E41B2BCB3
SHA-256DFD57B64ACDEBB2ABD41DB9960B45F0194085C6627FD8474F8C5C0B9F75A5FCC
Key Value
FileSize63318
MD558C11DE212FD056B26F7EDB9A7CEEB30
PackageDescriptionextension for computing string similarities and edit distances The Levenshtein module computes Levenshtein distances, similarity ratios, generalized medians and set medians of Unicode or non-Unicode strings. Because it's implemented in C, it's much faster than the corresponding Python library functions and methods. . The Levenshtein distance is the minimum number of single-character insertions, deletions, and substitutions to transform one string into another. . It is useful for spell checking, or fuzzy matching of gettext messages.
PackageMaintainerUbuntu MOTU Developers <ubuntu-motu@lists.ubuntu.com>
PackageNamepython-levenshtein
PackageSectionpython
PackageVersion0.10.1-1ubuntu1
SHA-122932742EDDFDFD37D21839B5D4B480736A1CEA7
SHA-2567860E8869D784E2B204F3ADD61F3FCB27A4FD0403FE88002ED2283FB6584C1A8
Key Value
FileSize66194
MD56A4D68EA138D336EC53D866A67387CED
PackageDescriptionextension for computing string similarities and edit distances The Levenshtein module computes Levenshtein distances, similarity ratios, generalized medians and set medians of Unicode or non-Unicode strings. Because it's implemented in C, it's much faster than the corresponding Python library functions and methods. . The Levenshtein distance is the minimum number of single-character insertions, deletions, and substitutions to transform one string into another. . It is useful for spell checking, or fuzzy matching of gettext messages.
PackageMaintainerUbuntu MOTU Developers <ubuntu-motu@lists.ubuntu.com>
PackageNamepython-levenshtein
PackageSectionpython
PackageVersion0.10.1-1ubuntu1
SHA-1552847A564A597669B02421A518156A00AB350EB
SHA-256399CE782468B6CF3D300099661578F195F933B50A9AF01B8DF18308EF7D75E96
Key Value
CRC32FC88D0A4
FileNamepython-levenshtein_0.10.1-1ubuntu1_i386.deb
FileSize63316
MD58CEFA1BD56D22EF2869B620E1A727611
OpSystemCode362
PackageDescriptionextension for computing string similarities and edit distances The Levenshtein module computes Levenshtein distances, similarity ratios, generalized medians and set medians of Unicode or non-Unicode strings. Because it's implemented in C, it's much faster than the corresponding Python library functions and methods. . The Levenshtein distance is the minimum number of single-character insertions, deletions, and substitutions to transform one string into another. . It is useful for spell checking, or fuzzy matching of gettext messages.
PackageMaintainerUbuntu MOTU Developers <ubuntu-motu@lists.ubuntu.com>
PackageNamepython-levenshtein
PackageSectionpython
PackageVersion0.10.1-1ubuntu1
ProductCode9525
RDS:package_id9525
SHA-19545696A40E23889A685D0B0487E750AF969F9D0
SHA-256A64E37F2736A7AA68C5F3473B3B7180DCF83BBFD9B4CA5054442419004195AE4
SpecialCode
dbnsrl_legacy
insert-timestamp1648719998.803767
sourceRDS_2022.03.1_legacy.db
Key Value
FileSize93394
MD56159D43F34033EAF05C3AC1606648874
PackageDescriptionextension for computing string similarities and edit distances The Levenshtein module computes Levenshtein distances, similarity ratios, generalized medians and set medians of Unicode or non-Unicode strings. Because it's implemented in C, it's much faster than the corresponding Python library functions and methods. . The Levenshtein distance is the minimum number of single-character insertions, deletions, and substitutions to transform one string into another. . It is useful for spell checking, or fuzzy matching of gettext messages.
PackageMaintainerUbuntu MOTU Developers <ubuntu-motu@lists.ubuntu.com>
PackageNamepython-levenshtein
PackageSectionpython
PackageVersion0.10.1-1ubuntu1
SHA-131F3D763B673F0D1A9A17D03303420A311F71DF7
SHA-2565B8C6CAE0D0898FF734D0F3521EC0C63C03D133FE0BF27EE2B7F363B9E61BFB5
Key Value
FileSize71964
MD57C36E1DA007450AFAFB335CF14803006
PackageDescriptionextension for computing string similarities and edit distances The Levenshtein module computes Levenshtein distances, similarity ratios, generalized medians and set medians of Unicode or non-Unicode strings. Because it's implemented in C, it's much faster than the corresponding Python library functions and methods. . The Levenshtein distance is the minimum number of single-character insertions, deletions, and substitutions to transform one string into another. . It is useful for spell checking, or fuzzy matching of gettext messages.
PackageMaintainerUbuntu MOTU Developers <ubuntu-motu@lists.ubuntu.com>
PackageNamepython-levenshtein
PackageSectionpython
PackageVersion0.10.1-1ubuntu1
SHA-167BE75E7A82010E4FF15824415EF2F9560031AAE
SHA-256C475D727C454BDDCB2A446EF0FA401304375FCEF34617CAC484D33F93B8AFECB