Result for 9652DE738EBB296464C36CC57D99A23CE5A9538D

Query result

Key Value
FileName./usr/share/licenses/libcholmod3/ChangeLog
FileSize13579
MD5F9E3DF7571BB949310DF6BE43CA9E017
SHA-19652DE738EBB296464C36CC57D99A23CE5A9538D
SHA-256858987589F1D6BD9188EB2C9EEFBB8C7B68BF7A3AD924CFF63B2133BB23C48CD
SSDEEP384:n4oNwPO0CfNcYPS4dUvC44BhPWqq9W3bify0LtjrGXB3h0Y51zw:n4oNwPOreYPS46C44XPWqq9WufZJGR30
TLSHT12C52752A32CA2272E16142D28FDBEE60D77C525F67564640700FD1382FA39BD536F758
hashlookup:parent-total17
hashlookup:trust100

Network graph view

Parents (Total: 17)

The searched file hash is included in 17 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD5BE0DDB6AD01F035DD4BB174B2C0D002C
PackageArchs390x
PackageDescriptionCHOLMOD is a set of ANSI C routines for sparse Cholesky factorization and update/downdate. A MATLAB interface is provided. The performance of CHOLMOD was compared with 10 other codes in a paper by Nick Gould, Yifan Hu, and Jennifer Scott. see also their raw data. Comparing BCSLIB-EXT, CHOLMOD, MA57, MUMPS, Oblio, PARDISO, SPOOLES, SPRSBLKLLT, TAUCS, UMFPACK, and WSMP, on 87 large symmetric positive definite matrices, they found CHOLMOD to be fastest for 42 of the 87 matrices. Its run time is either fastest or within 10% of the fastest for 73 out of 87 matrices. Considering just the larger matrices, it is either the fastest or within 10% of the fastest for 40 out of 42 matrices. It uses the least amount of memory (or within 10% of the least) for 35 of the 42 larger matrices. Jennifer Scott and Yifan Hu also discuss the design considerations for a sparse direct code. CHOLMOD is part of the SuiteSparse sparse matrix suite.
PackageNamelibcholmod3
PackageRelease45.1
PackageVersion3.0.14
SHA-107F3F1BC6BFC7D0450E48C70DFB57B0B89B1BFFF
SHA-256142726F632A4DF5B8E12E4E22DCCFF35754EF869FB5AB16C46957FBBA65C5A49
Key Value
MD5755E16B96250F75984C4C02FD12B1E8C
PackageArchx86_64
PackageDescriptionCHOLMOD is a set of ANSI C routines for sparse Cholesky factorization and update/downdate. A MATLAB interface is provided. The performance of CHOLMOD was compared with 10 other codes in a paper by Nick Gould, Yifan Hu, and Jennifer Scott. see also their raw data. Comparing BCSLIB-EXT, CHOLMOD, MA57, MUMPS, Oblio, PARDISO, SPOOLES, SPRSBLKLLT, TAUCS, UMFPACK, and WSMP, on 87 large symmetric positive definite matrices, they found CHOLMOD to be fastest for 42 of the 87 matrices. Its run time is either fastest or within 10% of the fastest for 73 out of 87 matrices. Considering just the larger matrices, it is either the fastest or within 10% of the fastest for 40 out of 42 matrices. It uses the least amount of memory (or within 10% of the least) for 35 of the 42 larger matrices. Jennifer Scott and Yifan Hu also discuss the design considerations for a sparse direct code. CHOLMOD is part of the SuiteSparse sparse matrix suite.
PackageNamelibcholmod3
PackageRelease85.3
PackageVersion3.0.14
SHA-108C4CEE983936BAF27DC80BF2A38B4EC17D2CD2C
SHA-256A890C4B91821AF3DD3B509B3325AFB55DCE11920122F26EC8B07D7613182DC3B
Key Value
MD5A4E647D07CB53F8DD54326DE6741F34C
PackageArchx86_64
PackageDescriptionCHOLMOD is a set of ANSI C routines for sparse Cholesky factorization and update/downdate. A MATLAB interface is provided. The performance of CHOLMOD was compared with 10 other codes in a paper by Nick Gould, Yifan Hu, and Jennifer Scott. see also their raw data. Comparing BCSLIB-EXT, CHOLMOD, MA57, MUMPS, Oblio, PARDISO, SPOOLES, SPRSBLKLLT, TAUCS, UMFPACK, and WSMP, on 87 large symmetric positive definite matrices, they found CHOLMOD to be fastest for 42 of the 87 matrices. Its run time is either fastest or within 10% of the fastest for 73 out of 87 matrices. Considering just the larger matrices, it is either the fastest or within 10% of the fastest for 40 out of 42 matrices. It uses the least amount of memory (or within 10% of the least) for 35 of the 42 larger matrices. Jennifer Scott and Yifan Hu also discuss the design considerations for a sparse direct code. CHOLMOD is part of the SuiteSparse sparse matrix suite.
PackageNamelibcholmod3
PackageReleasebp151.44.1
PackageVersion3.0.14
SHA-1094E1602C2ED2D971F4DFFE045C8B8833794A520
SHA-256CDA294767969A938A52C489AE33EF1015770B3981422B65CC030408EBE3DD68E
Key Value
MD59370CBE8EB01C1036150A37FA56C84B1
PackageArchx86_64
PackageDescriptionCHOLMOD is a set of ANSI C routines for sparse Cholesky factorization and update/downdate. A MATLAB interface is provided. The performance of CHOLMOD was compared with 10 other codes in a paper by Nick Gould, Yifan Hu, and Jennifer Scott. see also their raw data. Comparing BCSLIB-EXT, CHOLMOD, MA57, MUMPS, Oblio, PARDISO, SPOOLES, SPRSBLKLLT, TAUCS, UMFPACK, and WSMP, on 87 large symmetric positive definite matrices, they found CHOLMOD to be fastest for 42 of the 87 matrices. Its run time is either fastest or within 10% of the fastest for 73 out of 87 matrices. Considering just the larger matrices, it is either the fastest or within 10% of the fastest for 40 out of 42 matrices. It uses the least amount of memory (or within 10% of the least) for 35 of the 42 larger matrices. Jennifer Scott and Yifan Hu also discuss the design considerations for a sparse direct code. CHOLMOD is part of the SuiteSparse sparse matrix suite.
PackageNamelibcholmod3
PackageReleasebp153.44.4
PackageVersion3.0.14
SHA-11633BB64B57529B30B6B8C9DF1C42D467D70BF5B
SHA-25688CB6F19AB0E5AE5265F5F8F97B5AC2997F3E2FEC9B1833572C0B0E8C6ADEAB3
Key Value
MD50EE7F85740BF35C237C50E8C439248E3
PackageArchx86_64
PackageDescriptionCHOLMOD is a set of ANSI C routines for sparse Cholesky factorization and update/downdate. A MATLAB interface is provided. The performance of CHOLMOD was compared with 10 other codes in a paper by Nick Gould, Yifan Hu, and Jennifer Scott. see also their raw data. Comparing BCSLIB-EXT, CHOLMOD, MA57, MUMPS, Oblio, PARDISO, SPOOLES, SPRSBLKLLT, TAUCS, UMFPACK, and WSMP, on 87 large symmetric positive definite matrices, they found CHOLMOD to be fastest for 42 of the 87 matrices. Its run time is either fastest or within 10% of the fastest for 73 out of 87 matrices. Considering just the larger matrices, it is either the fastest or within 10% of the fastest for 40 out of 42 matrices. It uses the least amount of memory (or within 10% of the least) for 35 of the 42 larger matrices. Jennifer Scott and Yifan Hu also discuss the design considerations for a sparse direct code. CHOLMOD is part of the SuiteSparse sparse matrix suite.
PackageNamelibcholmod3
PackageReleaselp151.84.1
PackageVersion3.0.14
SHA-1202350ADB91E2977204CB81391FD94572582A6F8
SHA-256824E832965B9D460100E82889958D24D9D1F74161FADEA873F8A0E417E53407F
Key Value
MD55A1CF3E368C35B0CFCB82B2DFDC9D769
PackageArchi586
PackageDescriptionCHOLMOD is a set of ANSI C routines for sparse Cholesky factorization and update/downdate. A MATLAB interface is provided. The performance of CHOLMOD was compared with 10 other codes in a paper by Nick Gould, Yifan Hu, and Jennifer Scott. see also their raw data. Comparing BCSLIB-EXT, CHOLMOD, MA57, MUMPS, Oblio, PARDISO, SPOOLES, SPRSBLKLLT, TAUCS, UMFPACK, and WSMP, on 87 large symmetric positive definite matrices, they found CHOLMOD to be fastest for 42 of the 87 matrices. Its run time is either fastest or within 10% of the fastest for 73 out of 87 matrices. Considering just the larger matrices, it is either the fastest or within 10% of the fastest for 40 out of 42 matrices. It uses the least amount of memory (or within 10% of the least) for 35 of the 42 larger matrices. Jennifer Scott and Yifan Hu also discuss the design considerations for a sparse direct code. CHOLMOD is part of the SuiteSparse sparse matrix suite.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamelibcholmod3
PackageRelease43.6
PackageVersion3.0.14
SHA-129EDCB6A1347B836F69615A5657B6B366E78B9E0
SHA-2564832938A6386D1787C669ADB6D9DEFD6AED9050F53FBA774191B4AB25D1AE615
Key Value
MD56386504BB6444FC219E45F2627F0D925
PackageArchi586
PackageDescriptionCHOLMOD is a set of ANSI C routines for sparse Cholesky factorization and update/downdate. A MATLAB interface is provided. The performance of CHOLMOD was compared with 10 other codes in a paper by Nick Gould, Yifan Hu, and Jennifer Scott. see also their raw data. Comparing BCSLIB-EXT, CHOLMOD, MA57, MUMPS, Oblio, PARDISO, SPOOLES, SPRSBLKLLT, TAUCS, UMFPACK, and WSMP, on 87 large symmetric positive definite matrices, they found CHOLMOD to be fastest for 42 of the 87 matrices. Its run time is either fastest or within 10% of the fastest for 73 out of 87 matrices. Considering just the larger matrices, it is either the fastest or within 10% of the fastest for 40 out of 42 matrices. It uses the least amount of memory (or within 10% of the least) for 35 of the 42 larger matrices. Jennifer Scott and Yifan Hu also discuss the design considerations for a sparse direct code. CHOLMOD is part of the SuiteSparse sparse matrix suite.
PackageNamelibcholmod3
PackageRelease45.3
PackageVersion3.0.14
SHA-14ECDA9DC8056C818B9C005DAD42560F331ED4242
SHA-256418F6C07F64523498F525E3939C5943897FF0046752C1663382970A59C63A071
Key Value
MD52944CDDACEA549B00780E25D771B390C
PackageArchx86_64
PackageDescriptionCHOLMOD is a set of ANSI C routines for sparse Cholesky factorization and update/downdate. A MATLAB interface is provided. The performance of CHOLMOD was compared with 10 other codes in a paper by Nick Gould, Yifan Hu, and Jennifer Scott. see also their raw data. Comparing BCSLIB-EXT, CHOLMOD, MA57, MUMPS, Oblio, PARDISO, SPOOLES, SPRSBLKLLT, TAUCS, UMFPACK, and WSMP, on 87 large symmetric positive definite matrices, they found CHOLMOD to be fastest for 42 of the 87 matrices. Its run time is either fastest or within 10% of the fastest for 73 out of 87 matrices. Considering just the larger matrices, it is either the fastest or within 10% of the fastest for 40 out of 42 matrices. It uses the least amount of memory (or within 10% of the least) for 35 of the 42 larger matrices. Jennifer Scott and Yifan Hu also discuss the design considerations for a sparse direct code. CHOLMOD is part of the SuiteSparse sparse matrix suite.
PackageNamelibcholmod3
PackageRelease85.70
PackageVersion3.0.14
SHA-15626653D5C1A0A75359FA86E8CF2D7F58AECBD56
SHA-256196D889F864D0E0D7CC71A9F310A054020EE3A202D12CF59B64C7C4A64E400FE
Key Value
MD5767D599CC12E0EEA9420648C7CB05A65
PackageArchx86_64
PackageDescriptionCHOLMOD is a set of ANSI C routines for sparse Cholesky factorization and update/downdate. A MATLAB interface is provided. The performance of CHOLMOD was compared with 10 other codes in a paper by Nick Gould, Yifan Hu, and Jennifer Scott. see also their raw data. Comparing BCSLIB-EXT, CHOLMOD, MA57, MUMPS, Oblio, PARDISO, SPOOLES, SPRSBLKLLT, TAUCS, UMFPACK, and WSMP, on 87 large symmetric positive definite matrices, they found CHOLMOD to be fastest for 42 of the 87 matrices. Its run time is either fastest or within 10% of the fastest for 73 out of 87 matrices. Considering just the larger matrices, it is either the fastest or within 10% of the fastest for 40 out of 42 matrices. It uses the least amount of memory (or within 10% of the least) for 35 of the 42 larger matrices. Jennifer Scott and Yifan Hu also discuss the design considerations for a sparse direct code. CHOLMOD is part of the SuiteSparse sparse matrix suite.
PackageNamelibcholmod3
PackageReleasebp152.44.3
PackageVersion3.0.14
SHA-17AB555F31BCDE8D5C02F8C9B51EBED38E2D9469C
SHA-2561E7DCF4B2A2F2E743FD5D3EB1995ECC9E6FCDA0CB4F5E0B7DF114B3A08FB44C8
Key Value
MD5B031265A052427FF6E054DDAA83E1667
PackageArchx86_64
PackageDescriptionCHOLMOD is a set of ANSI C routines for sparse Cholesky factorization and update/downdate. A MATLAB interface is provided. The performance of CHOLMOD was compared with 10 other codes in a paper by Nick Gould, Yifan Hu, and Jennifer Scott. see also their raw data. Comparing BCSLIB-EXT, CHOLMOD, MA57, MUMPS, Oblio, PARDISO, SPOOLES, SPRSBLKLLT, TAUCS, UMFPACK, and WSMP, on 87 large symmetric positive definite matrices, they found CHOLMOD to be fastest for 42 of the 87 matrices. Its run time is either fastest or within 10% of the fastest for 73 out of 87 matrices. Considering just the larger matrices, it is either the fastest or within 10% of the fastest for 40 out of 42 matrices. It uses the least amount of memory (or within 10% of the least) for 35 of the 42 larger matrices. Jennifer Scott and Yifan Hu also discuss the design considerations for a sparse direct code. CHOLMOD is part of the SuiteSparse sparse matrix suite.
PackageNamelibcholmod3
PackageReleasebp150.44.1
PackageVersion3.0.14
SHA-18292EF2135F9C42DCE32E982061AA82FFC9F20C9
SHA-256773510A02E8F190DFF99CE2F57E3ACFD32A4FD3BB9789920F5F43F73E652E1EF