Result for 8C4AFCF6374C79631DDE5A18DD08F2E791FF3C8A

Query result

Key Value
FileName./usr/lib/python3/dist-packages/emcee/tests.py
FileSize8449
MD5ED427B3BCBA7966766F2A58AEE0588B9
SHA-18C4AFCF6374C79631DDE5A18DD08F2E791FF3C8A
SHA-256548B07D666BC32C193AF4E3EE7D21E5DFF33B71DCFB4DE2E74A0A6C7AE621826
SSDEEP192:2oQ5HKpZ5J9ncVMKxo8nmQ7Q7QqeBBd72eGKT:KHKpZgHxx8neRCzKT
TLSHT195024415694547279343C42690EBE13B363F3D1785CCA42A79BED3116FA422992B3FF8
hashlookup:parent-total2
hashlookup:trust60

Network graph view

Parents (Total: 2)

The searched file hash is included in 2 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize20950
MD59154029D2D6E37E077740FEFD94A3E45
PackageDescriptionAffine-invariant ensemble MCMC sampling for Python 3 emcee is an extensible, pure-Python implementation of Goodman & Weare's Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler. It's designed for Bayesian parameter estimation. . This is the Python 3 package.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython3-emcee
PackageSectionpython
PackageVersion2.1.0-5
SHA-181B325B0B94D7FAB52443297373A512798696D19
SHA-256C5C120686BB4A2034D7F8A2D87FCFA5BC247F6CA7BA084FAD41E1C759A76B5F2
Key Value
FileSize20878
MD5DB5C74813F73B5D3FB76B4D17EA27E8E
PackageDescriptionAffine-invariant ensemble MCMC sampling for Python emcee is an extensible, pure-Python implementation of Goodman & Weare's Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler. It's designed for Bayesian parameter estimation. . This is the Python 2 package.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython-emcee
PackageSectionpython
PackageVersion2.1.0-5
SHA-107A6AD42D90C8AE4C36D89D7AFC8772F00F4D050
SHA-2566BE3C88F3F83E4B872ABE37ADEFA8D939C882C6619C0246AAA8F9DBF627C3AF1